Overunity.com Archives is Temporarily on Read Mode Only!



Free Energy will change the World - Free Energy will stop Climate Change - Free Energy will give us hope
and we will not surrender until free energy will be enabled all over the world, to power planes, cars, ships and trains.
Free energy will help the poor to become independent of needing expensive fuels.
So all in all Free energy will bring far more peace to the world than any other invention has already brought to the world.
Those beautiful words were written by Stefan Hartmann/Owner/Admin at overunity.com
Unfortunately now, Stefan Hartmann is very ill and He needs our help
Stefan wanted that I have all these massive data to get it back online
even being as ill as Stefan is, he transferred all databases and folders
that without his help, this Forum Archives would have never been published here
so, please, as the Webmaster and Creator of these Archives, I am asking that you help him
by making a donation on the Paypal Button above.
You can visit us or register at my main site at:
Overunity Machines Forum



A SIMPLE ELECTRIC HEATER, WHICH HAS EFFICIENCY GREATER THAN 1

Started by George1, January 28, 2019, 02:58:40 AM

Previous topic - Next topic

0 Members and 3 Guests are viewing this topic.

George1

Hi again Gyula,
Here is my next report.
The retired former Hogen 6m's operator became a strong supporter of our cause. He considered carefully all posts in this topic written until now and noticed something that had to be corrected. Our new friend and supporter shares the fundamental point of view that the validity of the Joule's heat law directly derives from the Ohm's law and vice versa, that is,
V = I x R  (1)  <=>  V x I x t = I x I x R x t  (2)
where
V is the voltage of the battery;
I is the current flowing through the resistor;
R is the ohmic resistance of the resistor;
t is time.
(Note. Both sides of equality (1) are simply multiplied simultaneously by (I x t) and the result is equality (2).)
But, as our new friend notices, the last two equalities (1) and (2) are strictly valid only for solid resistors. For liquid resistors (electrolytes) equalities (1) and (2) have to be re-written again in a little different manner, that is,
(V - v) = (I - i) x R  (3)  <=>   (V - v) x (I - i) x t= (I - i) x (I - i) x R x t  (4)
where
v is the minimum voltage necessary for the water-splitting electrolysis to begin; v = 1.5 volts by definition;
i is the related small decreasing of current I, caused by the presence of v.
But if V is much bigger than v (that is, if for example V = 100 volts and v = 1.5 volts), then we can assume that equalities (1) and (2) are perfectly valid for the liquid resistor (electrolyte) too as v and i can be neglected.
And from here follows again the expression for COP, which is given by
COP = ((V x I x t) + (H))/(I x I x R x t) > 1  (5)
where H is the heat of burning/exploding of hydrogen generated, HHV or LHV. 
---------------------
So the fact that a highly-qualified and experienced man of more than 30 years of practice related to electrolysers became our supporter gives us an additional strong confidence that the water-splitting electrolysis is really a heating process of COP > 1. It simply follows from (1), (2), (3), (4) and (5).
Looking forward to your answer.
Regards,
George
---------------------
P. S. We keep carrying out experiments. All tests until now confirm the validity of (1), (2), (3), (4) and (5).
   

George1

Hi Gyula,
Let me report what we have done.
1) Our (already) numerous experiments show that the theoretical value of the minimum potential difference of 1.484 volts, which is necessary for the water-splitting electrolysis to begin (Prof. S. L. Srivastava, M. Sc., Ph. D., Solved Problems in Physics, Volume - 2, solved problem 12.94, p. 875), is actually a little bigger and varies between 1.7 and 2 volts. Obviously this is due to the electrode potential, overvoltage, side reactions, etc. But this 1.7 - 2 volts correction practically does not influence the validity of the main concept, i.e., the validity of the inequality COP > 1.
2) Besides there are at least 10 (ten) extremely precise and detailed experimental research papers written by a bunch of highly qualified electrochemistry experts from Japan, India and China. (These three countries seem to the leaders in the field of water-splitting electrolysis as a theory and practice.) We simply took their experimental results. The new summation result was again COP > 1. (It is important to stress upon the fact that the experimental data from the above mentioned research papers is obtained in a much more precise manner than our one -- this is due to the presence of high-quality equipment and highly-qualified experimenters.)
3) Our new friend and supporter, the retired Hogen 6m's operator, says that our COP > 1 conception simply gathers together TRUE experimental facts, which have been WRONGLY considered IN ISOLATION until now.
4) We keep carrying out experiments.
Looking forward to your answer.
Regards,
George

George1

Hi Gyula,
I am sending to you the sulphuric acid experimental results as promised. We simply repeated the experiment described in solved problem 12.97 (Solved Problems in Physics", 2004, Volume 2, p. 876, Prof. S. L. Srivastava, Ph.D.). The experimental approach and the test results are briefly described below.
1) A glass container, which has a form of a rectangular parallelepiped and which has dimensions 0.01m/0.01m/0.37m, is filled entirely with 30 % sulphuric acid. Two electrodes are dipped in the electrolyte in the two opposite ends of the container. The ohmic resistance of the electrolyte is just equal to 0.5 Ohm. The glass container has no upper lid -- it is open from above.
2) The glass container is situated on a horizontal table in such a manner that its longest side (0.37m) is horizontal,i.e., parallel to the horizontal Earth's surface.
3) The electrolyte is connected in series to a variable resistor (rheostat) in order to control and adjust (if necessary) the value of the current. And more precisely, the circuit consists of a DC source, a variable resistor (rheostat) and a glass container filled with sulphuric acid. These three components are connected in series.
4) Within a period of 20 minutes it can be clearly observed that one of the electrodes generates bubbles of hydrogen (the latter produces flame/explodes slightly if fired) and the other electrode generates bubbles of oxygen.
5) In order to keep a constant value of the current without using the rheostat we had to keep pouring (from time to time) pure water in the container and keep cooling it down. (It was not an easy operation and was a little dangerous.)
6) The experimental COP results always varied around 1.29 (which was calculated by you assuming that hydrogen's LHV is equal to 120 MJ per kilogram of liberated hydrogen). Sometimes we got COP = 1.21, sometimes COP = 1.37, sometimes COP = 1.28, etc.; the mean value being around 1.29.
7) We have carried out already almost 100 experiments using various electrolytes in order to split water into hydrogen and oxygen. COP was always bigger than 1, i. e., COP > 1. Most of the already carried out experiments can be found in Internet and on YouTube and we simply coppied/repeated them.
8) It seems to us that there is no sense to keep carrying out other experiments. Their number is already equal to 100 and all these 100 experiments unambiguously show that experimental results confirm theory. COP > 1.
9) Besides (as mentioned in our previous post) there are at least 10 (ten) extremely precise and detailed experimental research papers written by a bunch of highly qualified electrochemistry experts from Japan, India and China. (These three countries seem to the leaders in the field of water-splitting electrolysis as a theory and practice.) We simply took their experimental results. The new summation result was again COP > 1. (It is important to stress upon the fact that the experimental data from the above mentioned research papers is obtained in a much more precise manner than our one -- this is due to the presence of high-quality equipment and highly-qualified experimenters.)
Looking forward to your answer.
Regards,
George           

gyulasun

Hi George,

Thanks for your posts on the activity you and the team have been doing on this electric heater topic.

It is good that you can get help from the now retired former Hogan 6m type machine operator.
It is even better that you found out that textbook examples cannot be trusted 100% in practice (electrode potential issue etc what was already mentioned by F6FLT), even if Professor M.Sc. Ph.D persons write them for students.

Regarding the research papers you mention, well, they may have more scientific approach and test results than textbook examples but of course you need to take and interpret them carefully too. If you do not mind I would be interested in the papers titles and their authors, just out of curiosity.

All in all, the only thing to achieve is to prove the COP > 1 claim for your setup by correct measurements if you want scientific community accept the claim. Especially so when such a setup is to be marketed as a product, having an unusually high efficiency that beats any other heaters already in use.

PS  I already wrote this answer in Notebook when I noticed your latest answer a few minutes ago, will return later.

Gyula

George1

Hi Gyula,
Thanks a lot for your reply.
Looking forward to your answer related to my last post.
Regards,
George