Overunity.com Archives is Temporarily on Read Mode Only!



Free Energy will change the World - Free Energy will stop Climate Change - Free Energy will give us hope
and we will not surrender until free energy will be enabled all over the world, to power planes, cars, ships and trains.
Free energy will help the poor to become independent of needing expensive fuels.
So all in all Free energy will bring far more peace to the world than any other invention has already brought to the world.
Those beautiful words were written by Stefan Hartmann/Owner/Admin at overunity.com
Unfortunately now, Stefan Hartmann is very ill and He needs our help
Stefan wanted that I have all these massive data to get it back online
even being as ill as Stefan is, he transferred all databases and folders
that without his help, this Forum Archives would have never been published here
so, please, as the Webmaster and Creator of this Forum, I am asking that you help him
by making a donation on the Paypal Button above
Thanks to ALL for your help!!


LTspice IV Computes That Over Unity AC Circuit Works!

Started by D.R.Jackson, April 27, 2009, 12:44:48 PM

Previous topic - Next topic

0 Members and 1 Guest are viewing this topic.

vasik041

I would like copy/paste here fragment of the post from LTspice group by John Popelish
(http://tech.groups.yahoo.com/group/LTspice/message/28962)

-- snip --

Your screen capture shows a great many operation cycles of a
system that stores energy in an inductance over some period
of time, and then releases that energy over a much shorter
period of time. So, low power going in for longer time,
higher power coming out for a shorter period of time. But
the average power going in is still less than or equal to
the average power coming out over a whole cycle of this
process. Energy storage elements like capacitors and
inductors allow for circuits that charge these devices
slowly (low peak power) but dump them quickly (high peak
power) but the average power charging is always equal to or
lower than the average discharge power. Conservation of
energy requires this and LTspice models energy conserving
inductors and capacitors, as their mathematical definitions
require.

-- snip --

D.R.Jackson

Quote from: hoptoad on April 29, 2009, 08:29:20 AM
@ D. R. Jackson, I have a simple question.

In your circuit shown above, can I assume that the emitter of Q1, and one leg of the input signal leads are connected directly to a common negative?

This is an important aspect of the circuit to me that needs clarifying before I can offer any pertinent comments on the circuit operation.
I grew up in the analogue era, and designed many audio (sine wave) amplifiers in my youth.

Cheers

Yea that is a common ground, the softwares uses a arrow icon for the common ground and thats the only ground symbol they have.  But you can draw a conduct for ground like I do when I hand draw a diagram.

I had a break through I will post in a reply to another post below.


D.R.Jackson

Quote from: vasik041 on April 30, 2009, 11:36:02 AM
I would like copy/paste here fragment of the post from LTspice group by John Popelish
(http://tech.groups.yahoo.com/group/LTspice/message/28962)

-- snip --

~ input versus output power wave cycle period ~


...I had a break through.. you can download it below.

Well those comments challenged me and set me on some research and a whole lot of circuit models and analysis as quick as I could to answer you with what I found out.

First of all the comments made me examine the circuits from every possible angle.  And I had to filter out the periodic energy of L1 from reflecting an AC current into the power supply V1.  And so, obtaining more of a DC power in V1 like it should be, I could study the effects of the circuits power and losses.  As well as work on keeping the output power wavecycles working on the fundamental drive frequency input into Q1.   So that there is no periodic change of the wavecycles.

The model in this reply that you can download below is going to blow your mind....  Like I said a few post back ~ it gets stranger as we go.

My Original Concept

In the circuit diagram below this reply you will see that I have heavily filtered out all periodic energy from the power supply V1 so that the perodic energy of the rest of the circuit, in the equation of things will not effect the energy of the power supply.  Though a small wave cycle energy still exist due to the capacitor and the coils of the filter.

  Given that I could make a circuit that was well energy balanced, and was able to replentish a few of its losses.  I would attempt to allow the circuit to replentish some of its current it draws through L1 back onto a capacitor where it would take off current on the negative half cycle and replace it on the positive.  And I would use a capacitor voltage divider for the voltage I need.  And so I would attempt to not allow this current to flow through the power supply.

In the model I uploaded in this post. I have done that.  I do need a small amount of DC collector Current in the uA range for the intial start up solution for Q1 so I have two resistors across the capacitors of the capacitor voltage divider.  And these restrict the DC current I need down to that for Q1 when it is in the cutoff cycle and just begins to conduct.

I was not sure I could ever get a model of this concept to work in LTspice.  But given the balance of the circuit and its concepts.  I was hoping that the concept of resonant energy would help along with the concept of replentishing a seperate current into the circuit in the virtual power supply feature of Dx.  And Dx only has to add a little collector current into the initial operating solution and it is 180 degree phased from I(L2).

Well the circuit fired up in LTspice and ran. 

You can download and run it and check the input power of V1 with the output power across C6 in this model.  Check you nodes so you know which ones to enter in, for you wattage plots.

My theory is this, all we need is a voltage potential at input and this can come from a mere capacitor voltage divider.  Though LTspice reveals that we do need a little DC current for our Class C no signal cutoff condition.

If we can induce a current in the circuit with the voltage across the capacitive voltage divider then we might be able to recirculate it around and around in the circuit.

The circuit appears to break down in analysis when I try to add loads to the circuit to take of the power.  My original theory says that the power is now a recirculation of current around in the circuit just like in a DC of AC generator that recirculates the same electrons around in its closed system of the generator windings and the load.

SO now in my theory the circuit should be my generator.  And no current should be flowing in V1 except the small collector current we need at a certain point in the phase cycle.

LTspice thens to still want to take the wattage away from the power supply in the analysis of adding a load.  Of course the load has to be placed in the ideal place of the system to balance the equations.  The load should only upset the balance of the circuit.  And no current or power should be required from the power supply in this circuit except that small amount previously mentioned.

So either I can not find the proper place to load the circuit to extract some power, or else LTspice breaks down in analysis beyond this point.

Anyways, this circuit here was the original idea and the whole matter of investigation by me to see if I can make the concept run is software.

If this can lead to something in the future, it will take many minds looking over it and analyzing it all.

Technically, following conventional views and thinking this circuit should not work at all.

But LTspice seems to support my field force theory of which the capacitor voltage divider was the original concept objective.

I am sure that the folk at the LTspice group now will not be able to understand this circuit in a long time to come.

Run it for as many seconds as you want.  And according to conventional theory there should not be any circulating power of any kind in this circuit and certainally at the levels that LTspice computes. 

If you have trouble seeing in the graphic below the thin line of the plotted power supply input power of this model.  Being its not a real good graphics card I have, just run the Spice file download below and see for yourself. (V(n001)*I(V1)

So, here is an anomoly.

Like I said earlier in these post, it get stranger and stranger as we go along here.

This one model here is one I am sure many people around the world will ponder for a long time to come and can not be explained.  I can however explain it in my original theories.  And I just had to see if I could model my theories.  I did not think that this original idea would work in the end after I tweaked up the models to run good with a conventional power supply. But I did save the best for last.

And we need many more minds here, and so, my models from this point are open source and please enjoy them.

Please note that you can change the two capacitors of the voltage divider to as low as 10000uF each and not have to modelt the circuit with two 1F caps.  The small AC current in V1 will be of shorter wavecycles but of about the same level.

I sure hope that there is someone in this world who can find a solution for taking off the power of this circuit!  So good luck.  How do we load it?  We need an engineer with some advanced math analysis to do this.

D.J.

(The capacitor voltage divider supplies +50V, and the two divider resistors are for a little collector current.  L2 and DX provide more DC collector current by the self induction of the circuit.  The power across C5 and C6 are extraordinary when you analyze this circuit that is not even suppose to work in conventional views.)

You want to plot:

V(n001)*I(V1)

V(Vc)*I(C6)

It will be hard to explain this model, and how it is designed to work.  But all we need is the field force of 50V and the circuit is designed to circulate around the current that it needs.


D.R.Jackson

Ok I have done some analysis of Pure DC input power versus AC output power wave cycles and their period and average of the peaks.  And have a model I am working on to tweak up where the period of the wave cycle is the same as that of the input signal, but the postive going power cycle peak is of longer duration (longr than 180 degrees) than that of the input siganl making the powering up cycle longer per wave cycle and the average of the peaks come out to over the input.  I will upload those models as soon as I am done working on them with a text as well as reference graphics.  Both the duration of the power on the postive peak is longer and the average of the peaks are greater than the pure DC input power when multipied by 2 for peak to peak AC.

Neadless to say it shocks me.  I will upload those as soon as I can for you to run and prove to yourself.

I am just passing through here quickly to add some comments to my post and must get back to work here.  So when I have free time to read up on all of the replies to my post here I will answer them.

I have had some very important analysis observations and break throughs in the past days here.

But first of all I must comment that, I have to watch about forgetting to make power supply adjustments in my models when I replace one transistor type in the circuit with another since I can end up with too much transistor collector voltage on the model.  The remedy for you is to turn down the power supply voltage if I forgot and left it high.  The results is lower output watts, but all things being relative the circuit performs the same ratio wise.

I did not like the way that my capacitor voltage divider was performing over time in my novelty version of my sonic resonator circuit and so scrapped that idea for the moment.  And went back to the power supply to power the circuit.  But I will return back to look at this idea again later.

For the moment I have made some extra energy conservation improvements to the circuit and have made it work better.

What I have been doing now to measure the performance is comparing the input power in terms of DC peak power versus the average output power wave cycle peaks across a resistor R1 between Vc and ground.

First of all, contrary to someones measurements of the period of the wave cycles, the period of the wave cycle is exactly of the same period as the input signal source.  However, the positive powering half cycle is converted to a longer duration, making the output power on the half cycle longer per cycle and thus powering the output longer in joules per time terms than the original signal sinewave input.  The positive hald cycle peak of the output power wave cycle is thus longer than that of the input power and equates to longer powering time per cycle which alone is an energy enhancement.

Next of all, by adjustment of the parts with regards to the concepts of the principles of the circuit and analyzing the peaks of the output per positve half cycle and then averaging them as the folk over at the LTspice forum claimed that they did.  The averaged power output peak to peak terms with regards to the input power in DC peak terms is over twice the DC input peak power by 1 watt in some models.  However,since the positive half cycle is also of a longer duration than 180 degrees, this equates to the output power in watts being higher than the average of the peaks, in terms of joules per time.  Or duration of the power cycle.

At time certain things did not add up right like the theory says.  However what I found out is that I have to work on adjustment of my partts in the circuit to recover and conserve energy losses and these proved to me that with the above comments that it is possible to make the model realize and demonstrate that the comments and critque of the good folk over at the LTspice forum were wrong.

I realize that there are many good folk over at the forum and they have helped me with things for my radio circuit design projects before.  But I realize also that sometimes someone out of habit might look at a plot and formulate a conclusion without actually measuring things in the plots.  Which, well that happens.

What I am going to do for you here who are interested in running some models that will stand up to the analysis.  Is to upload those models I am working on measuring now, along with the input power wavecycle plots and the analysis of those things mentioned above.  And you can run those models in LTspice to examine whether not yourself if what I am saying and have found out is true.

There in one thing though about the circuits that make it kind of hard to use the power and that is the way it wants to be loaded at out put that will not effect the resonance (timing) of the circuit and degrade its performance.  And that is the fact that it wants to see a capacitor or a resitor across the output.  And so, the circuit seems for the moment to only be usefull for power enhancements to residential lighting (florescent or incandesent) as well as for resistive loads such as electrical heaters.

Knowing that the circuit did not want to work into anyother thing that is useful to us other than resistances such as electric lights and electric heaters.  I decided that if this is all that the concept of the circuit could ever be upscaled and used for.  Then that was what I have to focus on.  And so, it might not be something that will revolutionize the world of electrical energy as we might have had hopes for.  But we do need something to enhance our electric light and electric heating technologies and so, I guess we have to go with what the circuit demonstrates that it wants to see as an output.

I will give as many analyusis notes and observations as I can in notes insid emy Spice file upload that I will upload here when I am done.  And LTspice plot graphics also of my analysis I done and refer to.

And once everyone is then satisfied that the models running on a power supply (and not via a capacitor voltage divider such as I uploaded as a novel model concept) compute in their LTspice simulations to an energy enhancement.  I will then return back to some former ideas and see if I can better realize them with my newly teaked up models.

True, there are days when it all looks good and then bad.  But my discovery that my original ideas for tweaking the circuit to effect it wave cycle period and its averaged out power by analysis of the waveform peaks averaged out.  Made me look up again.  And so, if I can tame the capacitor voltage divider concept.  Which is a simulation that runs way to long on myslowPCand would have to run a few hours to test my theories for solving the discharge and allowing the circuit to balance it out in time.  I will return back to that and see if I can come up with something that will make it all better even more.

In theory the lower capacitor of the voltage divider should charge down the voltage and then stop somewheres in time and the circuit should charge it back up and thus over time have a slow running wave cycle of positive and neagative peaks.  But that remains yet to be seen.  But if I can accomplish that, then we can have the kind of power expression that the current simulation of that model demonstrates.  And I need a faster PC to analyze that slow running simulation.

Well I try to stay on top of energy conservation and loss recovery views in my circuit concepts, that follow the laws of physics and do not violate any of them.  Which is the whole matter of the design ~ energy conservation and recover (or to say recycling of losses).  Abd so, as long as the views are not violating physical laws, then LTspice with all of its programmed in math and physical laws will run the models.  If the laws violate those inside LTspice, then the model will not run or not demonstrate anything useful.  So all things must be accounted for in terms of energy loss recovery and conservation, and then the idea is to allow the electromechanical resonance of the circuit to add in, if the theories of all the Tesla buffs are true, an amount of latent energy that resonance provides.  It is such that the idea of electromechanical resonance is considered to be an energy plus rather than a loss.  And so, this is the idea of the circuit, to test those assumptions long held by Tesla buffs.

And who knows, what I might not be able to do with my circuit.  Others in universities with advanced degrees and insight as well as advanced math analysis in teams scattered out across the world.  May come up with a synopsis of the circuit and an equation from which they can convert the circuit into another form one day that will realize things that I can not at the moment.  But I do have to present software analysis of the principle in a beyond a shadow of a doubt way that anyone in this world can run in the software and analyze for themselves. So thats my next step. Those software analysis of proofs for feasibity reasons. 

So I will be here when I am done to give you those models I am working with now for you to run and analyze.

What I will provide then as an LTspice model for you to run is the one that I can design with the best expression of power versus power with all the notes on how to effect the performance of the circuit. And then, advanced engineering students and researchers can analyze everything mathematically.

All I ask of anyone who uses these models for analsysis and study is that when you make public mention of them ~ you always give me credit by name. And that if you want to market the technology you must compensate me with something good in return, you know, licensed by me.  And accredited by me.  For all of my many years of work in conceiving of the concepts and principles as the father of the invention.  And so, these devices are provide to all in an Open Source development manner.  Also, if you come up with a unique model you must provide it to me for me to look at and analyze.  And it must always be in the form of an LTspice file and not Tina Spice or Pspice, etc.  And I will always want to see a version of any product that comes to be marketed with these ideas.  So I can sample it and use it.  Without any expense to me to procure.

My finalized models for you will come to you with Acceptable Use Terms that you must abide by for using the concepts in research.  And you must agree to compensate me if you obtain a research grant for my innovations, and for if you want to consult with me.  And I reserve the right to charge a fee for consultations.