Overunity.com Archives is Temporarily on Read Mode Only!



Free Energy will change the World - Free Energy will stop Climate Change - Free Energy will give us hope
and we will not surrender until free energy will be enabled all over the world, to power planes, cars, ships and trains.
Free energy will help the poor to become independent of needing expensive fuels.
So all in all Free energy will bring far more peace to the world than any other invention has already brought to the world.
Those beautiful words were written by Stefan Hartmann/Owner/Admin at overunity.com
Unfortunately now, Stefan Hartmann is very ill and He needs our help
Stefan wanted that I have all these massive data to get it back online
even being as ill as Stefan is, he transferred all databases and folders
that without his help, this Forum Archives would have never been published here
so, please, as the Webmaster and Creator of these Archives, I am asking that you help him
by making a donation on the Paypal Button above.
You can visit us or register at my main site at:
Overunity Machines Forum



Selfrunning Free Energy devices up to 5 KW from Tariel Kapanadze

Started by Pirate88179, June 27, 2009, 04:41:28 AM

Previous topic - Next topic

0 Members and 152 Guests are viewing this topic.

asupawat

I just start. Can anyone share the schematic? I want to start build.

leo48

QuoteI just start. Can anyone share the schematic? I want to start build.

'S unique pattern of functioning is that Tariel Kapanadze not have anyone to

:-\
Leo48
Every problem has always at least two solutions simply find
The strength of the strong is the ability to navigate struggles with eye serene

scratchrobot

What does the process of ionization entail?

Radiation is absorbed by the material it penetrates by a process known as ionization. Radiation creates ions in the material that it passes through, and some or all of the radiation energy is lost during this process. An ion is an atom, group of atoms, or a particle with a positive or negative charge. Ionization is any process that changes the electrical balance within an atom. If we remove an electron from a stable atom, the atom becomes electrically incomplete. That is, there are more protons in the nucleus (positive charges) than there are electrons (negative charges). With an electron removed, the atom possesses a plus one charge, therefore it is a positive ion. Consequently, the liberated electron is a negative ion, as long as it exists by itself and does not combine with another atom.

Where do the electrons come from?

You already know that matter is made up of atoms, and atoms have electrons that orbit around the nucleus in shells. All we need to do is get the electron free of their orbit. How do we do this? The answer is fairly simple. If we take a piece of conductive wire and pass a current through it, the wire will heat up due to the resistance in the wire. The heat of the wire excites the electrons and they will break away (boil off) from the wire to expend the energy picked up from the heat of the current. When the energy of the electron is expended, it will return to the wire to become heated again. So this heated wire serves as our source of electrons.

Why do the electrons need to be accelerated and how is it done?

Our second requirement is to get the electrons traveling at high speeds. The reason we need to propel the electrons at high speeds is because the energy that the electron possesses and can transfer is dependent on its velocity. The higher the velocity of the electron when it interacts with an atom, the greater the energy of the radiation that will be produced. Propelling the electron is fairly simple. Since unlike charges (positive and negative) attract, and electrons posses a negative charge, all we need is a positive charge nearby to attract the electron. We can accomplish this by placing a piece of metal (anode) a short distance away from the wire filament (cathode).
When we apply a voltage to this anode, we place a high positive charge on it. This high positive charge acts much like a magnet, only it is attracting free electrons. The positive charge will possess a strong attractive force to the negative charge of the electrons that are boiling off of the filament. This attractive force pulls the electrons towards the anode at high speeds. By increasing the voltage applied to the anode we can increase the speed of the electrons.

What does the target material do?

The third and final requirement is to have a target material for the electrons to interact with. By placing some sort of matter between the electrons (filament) and the positive charge (anode) we meet our need. Also, the anode itself can be used as the target. In high voltage X-ray generators a special target material (Tungsten) is usually embedded into the anode. This gives the electrons a suitable material to interact with and produce x-rays. When the electron hits the target material, several things can happen. The electron can be absorbed by an atom and its energy transferred to the atom, the energy of the electron can cause another electron to be knocked out of its energy shell, or the electron may just slightly interact with other atomic particles. Radiation will be produced in all of these cases, but the energy of the radiation will be different.
The means of acceleration of the electrons is provided by applying a potential difference (voltage) across the tube anode and cathode and is independent of the voltage and current across the filament.

The Cathode

From the above illustration let's look at each of the components separately beginning with the cathode. The cathode is the negative terminal of the tube assembly and includes the filament, which is a small-coiled wire that is commonly made from tungsten. The filament provides the electrons for acceleration to the target (anode). Tungsten is metal with the desired properties for filaments, you have probably seen a tungsten filament in a light bulb before. The filament is normally powered by an alternating current that is supplied to it by a separate transformer.

The Anode

The positive terminal of an x-ray tube is called the anode, it serves three important functions, (1) it provides a complete circuit for purposes of accelerating the electrons, (2) it houses the target material, and (3) it helps to cool the tube. We already mentioned before that the generation of X-rays generates a tremendous amount of heat. If the heat in a tube was ignored, the target material that is embedded in the anode would be destroyed in a short period of time. The anode is typically made from materials with good thermal properties to dissipate heat. Copper and tungsten are common anode materials. In addition to using thermally conductive materials for the anode, alternate means of cooling that may be employed are gas, oil, water, or air.

http://www.ndt-ed.org/EducationResources/HighSchool/Radiography/introxrays.htm

@CosmoLV, is this the principle?

Regards,
scratchrobot

dole

Hi,
Last night I had little bit time to play and record the evidence,
so apology to those who find it not relevant, but I hope
it may refresh some memories and open some thoughts until completion.

http://www.youtube.com/watch?v=OKHqn-ng3Mc

d.


dllabarre

Quote from: dole on March 29, 2011, 12:33:17 PM
Hi,
Last night I had little bit time to play and record the evidence,
so apology to those who find it not relevant, but I hope
it may refresh some memories and open some thoughts until completion.

http://www.youtube.com/watch?v=OKHqn-ng3Mc

d.

Awesome video, great song and so true!!

Thank you for "reminding" us.  :)

Is that (I assume aluminum) plate charged?
If so, how?  With what source?

Thank you for this and all your work.
DonL