Overunity.com Archives is Temporarily on Read Mode Only!



Free Energy will change the World - Free Energy will stop Climate Change - Free Energy will give us hope
and we will not surrender until free energy will be enabled all over the world, to power planes, cars, ships and trains.
Free energy will help the poor to become independent of needing expensive fuels.
So all in all Free energy will bring far more peace to the world than any other invention has already brought to the world.
Those beautiful words were written by Stefan Hartmann/Owner/Admin at overunity.com
Unfortunately now, Stefan Hartmann is very ill and He needs our help
Stefan wanted that I have all these massive data to get it back online
even being as ill as Stefan is, he transferred all databases and folders
that without his help, this Forum Archives would have never been published here
so, please, as the Webmaster and Creator of these Archives, I am asking that you help him
by making a donation on the Paypal Button above.
You can visit us or register at my main site at:
Overunity Machines Forum



MH's ideal coil and voltage question

Started by tinman, May 08, 2016, 04:42:41 AM

Previous topic - Next topic

0 Members and 16 Guests are viewing this topic.

Can a voltage exist across an ideal inductor that has a steady DC current flowing through it

yes it can
5 (25%)
no it cannot
11 (55%)
I have no idea
4 (20%)

Total Members Voted: 20

Magneticitist

Quote from: MileHigh on May 09, 2016, 07:39:21 PM
Read my posting again and understand it, I solved for R=0.001 ohm so I was not discussing an ideal inductor there.


Good Lord man... did you not just ever so thoroughly stress there is no real difference?
What is the point of this? Why would you even continue to prod him into solving for R=.001 if you are
satisfied with his answer for R=0? We are now practicing an exercise in futility.

I see maybe you are trying to prove a point? show that there is no real difference?
but once again, it wouldn't. you cannot compare two things by only having one of them.

tinman

Quote from: MileHigh on May 09, 2016, 07:31:08 PM
<<< Im sorry MH,but that dose not work either,as the V has no slope ,due to that fact that the voltage is ideal. >>>





The best thing you could do for yourself is follow-though and answer the complete question and demonstrate competence in the subject matter.  You have been given a very generous start, now it's up to you and your peers to follow through.  You still have a long way to go.

The question still has not been answered....

QuoteRead again, Poynt stated that his sim did not run right the first time and when he tweaked the R value it ran as expected and he is in agreement with me now.

That is correct,his sim ran correct the second time when he placed a very small resistance in with the ideal inductor,and the result was no flow of current.
I have not seen Poynt agree with you. I read- This dose not agree with the Tau being infinity,and--thank you for the explanation.

QuoteThere is no slope associated with the voltage so I don't know what you are talking about.   Forget the Tau business for now, it's not relevant.

Your diagram shows a clear slope in the voltage across the inductor.
How can Tau not be relevant?.


Brad

tinman

Quote from: MileHigh on May 09, 2016, 07:39:21 PM
Read my posting again and understand it, I solved for R=0.001 ohm so I was not discussing an ideal inductor there.

Please solve for R=0,so as we are defined to the parameters of your original question,as i have shown you already the infinite difference this makes even at a resistance far less than .001 ohms


Brad

MileHigh

Quote from: Magneticitist on May 09, 2016, 07:48:40 PM

Good Lord man... did you not just ever so thoroughly stress there is no real difference?
What is the point of this? Why would you even continue to prod him into solving for R=.001 if you are
satisfied with his answer for R=0? We are now practicing an exercise in futility.

I see maybe you are trying to prove a point? show that there is no real difference?
but once again, it wouldn't. you cannot compare two things by only having one of them.

If you read the posting again you will see that I compared the 5 Henry coil with no resistor (ideal) and the 5 Henry coil with a 0.001 ohm resistor (real) and I clearly show that the behaviour between the two coils is nearly identical at t=1 second.

Magneticitist

Quote from: MileHigh on May 09, 2016, 07:47:54 PM
Magneticitist:

Sorry for being picky but I am not going to discuss Joule Thieves on this thread.  For the main coil in a Joule Thief, there is no such thing as a "inductor voltage to current ratio" and I am making a point to you about communicating effectively.  How can you expect to talk shop about Joule Thieves if the person you are talking to is a beginner that would not have a clue what you are saying when you say "inductor voltage to current ratio" which itself doesn't really make sense.  I won't go after you anymore about this but now you are fully aware.

Note, this thread is all about the energizing of an inductor.  My advice to you is to forget about Joule Thieves on this thread and focus on trying to answer the question and understand what is going on.

MileHigh

well this is the golden point we have both made now. this thread was made out of respect to your question.. a question Brad never had to make any attempt at answering.. A question that was conceived by you to somehow prove your view on his circuit was correct and superior. That was a joule Thief circuit. at least, a circuit using a transformer.  Why you decided to then go into an inductors 101 is obviously beyond me as we have clearly discussed I am out of my element just here to throw around catch phrases and impress total strangers.

I have been trying to figure your reason for bringing up this inductor lesson since I first read about
your question and I still don't get how it could possibly relate to the original conversation.

I understand you want to knit pick such statements as 'voltage to current ratio' but I don't see how that is confusing.. at the time it seemed a fairly straightforward way to word it. I'm pretty sure I could come up with a number of ways to literate an inductor charging, and how it has a voltage unit and current unit we could measure.. I don't think you realize saying such things to me doesn't offend me. I can only gather that conclusion since you so frequently want to point out that all of my thoughts here are just random things I pulled out of my buttcrack on the spot for jollies that not even the most remedial of minds can understand.