Overunity.com Archives is Temporarily on Read Mode Only!



Free Energy will change the World - Free Energy will stop Climate Change - Free Energy will give us hope
and we will not surrender until free energy will be enabled all over the world, to power planes, cars, ships and trains.
Free energy will help the poor to become independent of needing expensive fuels.
So all in all Free energy will bring far more peace to the world than any other invention has already brought to the world.
Those beautiful words were written by Stefan Hartmann/Owner/Admin at overunity.com
Unfortunately now, Stefan Hartmann is very ill and He needs our help
Stefan wanted that I have all these massive data to get it back online
even being as ill as Stefan is, he transferred all databases and folders
that without his help, this Forum Archives would have never been published here
so, please, as the Webmaster and Creator of these Archives, I am asking that you help him
by making a donation on the Paypal Button above.
You can visit us or register at my main site at:
Overunity Machines Forum



A SIMPLE ELECTRIC HEATER, WHICH HAS EFFICIENCY GREATER THAN 1

Started by George1, January 28, 2019, 02:58:40 AM

Previous topic - Next topic

0 Members and 6 Guests are viewing this topic.

George1

I don't know why my last post was sent three times in a row. It's not my fault.
George

gyulasun

Hi George,

First I need to draw attention to a typo, you wrote Z = 0.00000001 C/kg but the dimension is kg/C, ok?

I already wrote in my Reply #70 that the correct formula would be VxIxt = H (or  IxIxRxt = H) where the left hand side is input energy and the right hand side is the heat from the burning Hydrogen + the created heat in the electrolyte (the latter two heat quantities are the total output energy).
And here with these equations VxIxt = H (or IxIxRxt = H) we assume the law of the conservation of energy is valid as an initial condition. 
AND whether this equation VxIxt = H (or IxIxRxt = H)  becomes an inequality like either VxIxt < H (or IxIxRxt < H) to give COP > 1 or VxIxt > H (or IxIxRxt > H) to give COP < 1,  it can only be answered by measurements. (For simplicity, I omitted counter voltage and current, v and i from the formulas.)

No need to deal with theoretical considerations in this case. I already mentioned also that your idea is good, and common sense would readily suggest a COP > 1 result. BUT common sense is not science.

Gyula

George1

Hi Gyula.
Thank you for your reply.
1) Yes, common sense is not science. Correct! We keep performing experiments. It will take some time.
2) But if equation V x I x t = I x I x R x t = H is correct, then what happens with Joule' s heat? Where does it go? Does it disapper somewhere or what? Curious to know. Looking forward to your answer.
Regards,
George   

gyulasun

Hi George,

Please read my previous post (or my earlier reply #70) what I wrote I had meant on H:

"... is the heat from the burning Hydrogen + the created heat in the electrolyte (the latter two heat quantities are the total output energy)". 

So the Joule heat from the electrolyte does not dissappear of course. And I can only repeat the rest of what I wrote too:

"And here with these equations VxIxt = H (or IxIxRxt = H) we assume the law of the conservation of energy is valid as an initial condition.
AND whether this equation VxIxt = H (or IxIxRxt = H)  becomes an inequality like either VxIxt < H (or IxIxRxt < H) to give COP > 1 or VxIxt > H (or IxIxRxt > H) to give COP < 1,  it can only be answered by measurements. (For simplicity, I omitted counter voltage and current, v and i from the formulas.)"   

This is all that can comment on your theoretical math questions now and in the future.

Gyula


George1

Hi Gyula.
Thank you for your reply. Perfect explanations! I understand everything.
----------------------------
Let me report what are we doing now.
We are intensively performing now a set of experiments just in accordance with your instructions. But the experiments generate another new question and WE NEED HELP TO INTERPRET THE RELATED EXPERIMENTAL RESULTS which again coincide with our theoretical concept. And here is this new question. (Actually this is an old idea of ours which we check up in the course of experiments and which has even one more additional and more sophisticated variation. The latter will be revealed in future posts, if necessary.) 
----------------------------
1) In accordance with your last post let us assume hypothetically that equality V x I x t = (I x I x R x t) + (Z x I x t x (LHV)) is valid.
2) And now let us decrease n times voltage V where R = const and n > 1. This inevitably leads to decreasing of I n times too. In one word, we have now voltage (V/n) and current (I/n) where (V/n) is still bigger than v and (I/n) is still bigger than i. Therefore BASED ON EXPERIMENTAL DATA we can write down the following equality and the related inequality:
V x I x t = (I x I x R x t) + (Z x I x t x (LHV))  <=> (V/n) x (I/n) x t < ((I/n) x (I/n) x R x t) + (Z x (I/n) x t x (LHV)).
The last inequality unambiguously shows again that COP > 1.
So you see that an entirely different approach leads again to the same final result which is again COP > 1.
---------------------------
What is your opinion?
Looking forward to your answer.
George