Overunity.com Archives is Temporarily on Read Mode Only!



Free Energy will change the World - Free Energy will stop Climate Change - Free Energy will give us hope
and we will not surrender until free energy will be enabled all over the world, to power planes, cars, ships and trains.
Free energy will help the poor to become independent of needing expensive fuels.
So all in all Free energy will bring far more peace to the world than any other invention has already brought to the world.
Those beautiful words were written by Stefan Hartmann/Owner/Admin at overunity.com
Unfortunately now, Stefan Hartmann is very ill and He needs our help
Stefan wanted that I have all these massive data to get it back online
even being as ill as Stefan is, he transferred all databases and folders
that without his help, this Forum Archives would have never been published here
so, please, as the Webmaster and Creator of these Archives, I am asking that you help him
by making a donation on the Paypal Button above.
You can visit us or register at my main site at:
Overunity Machines Forum



Getting energy from asymmetry of the magnetic field experiment

Started by ayeaye, November 19, 2019, 11:10:15 AM

Previous topic - Next topic

0 Members and 3 Guests are viewing this topic.

ayeaye

Quote from: kolbacict on January 09, 2020, 07:19:31 AM
We tried it before, now I have tried it again. It does not hold, it sticks.It has been manufactured for two years

May be difficult in that way. Two bearings as on my photo above, each made of 4 magnets, may be more stable.


ayeaye

Measurements of the strengths of the magnets used in the experiment. This is not important and the strengths of the ceramic magnets can be easily found by their dimensions, but if anyone wants to know.

The force of separation between the small magnet and a small disc magnet was 2.3 N. The force of separation between two small disc magnets was 1.8 N.

The force of separation between the big magnet and a small disc magnet was 1.6 N. The force of separation between the big magnet and the small magnet was 2.6 N. At that the small disc magnets always attracted to the edge of the big disc magnets.

The force of separation between two big disc magnets was 5.0 N.

Again, the small disc magnets were ceramic magnets 10 mm in diameter and 5 mm thick, and the big disc magnets were ceramic magnets 25 mm in diameter and 5 mm thick. If this may help.


sm0ky2

Quote from: kolbacict on January 09, 2020, 07:19:31 AM
We tried it before, now I have tried it again. It does not hold, it sticks.It has been manufactured for two years
.Jumps off and attracts.Only a gyroscope or use electricity.


It is real finicky and placement/distances of the magnets are not
going to be perfectly symmetrical.
Also, the way you spin it can cause it to jump off if not careful.


I'm not sure what use it has other than a toy. I haven't found a way
to attach a drive shaft without the 1-ended support.
The force on the shaft or belt pulley destroys it.


Perhaps a two-belt system where the magnetic repulsion gives the belts tension?
(shrug)


Back to this angled magnet thing:


Solid disks makes this a lot easier: (only one field)
To the left of the interaction point magnetic density increases
as you approach the pole. (Peak is at the corner very close to your point)
To the right, magnetic density decreases as the field expands
(a secondary lower peak at ~ 1/4 length of the magnet)
Then it approaches 0 at the meridian.
This will occur in two forms with your stack, one for each magnet, and
a larger (less dense) field of the whole stack.
Density at the poles increases with more magnets in the stack.


The combined field of the stack (at your point of interaction) will behave
similar to a single magnet (solid cylinder or disk)


At the peak: (which is just inside the corners on the flat pole face)
you will have the greatest magnetic density.
The vectored force will try to align the other pole such that the density
is equal on all sides (self centering effect)
At this location, the force will change direction and oppose any change in location
this is easiest observed with magnetic attraction, but can also be observed in repulsion
when you apply a pressure to force the magnet to this point. (inverse)


If you map the field lines with filings or a magnetic viewer you get a visible representation
of the field density gradient. In short, there are more lines to the left of your point
and less lines to the right (per distance/volume increment)
Turning the larger magnet slightly more vertical will cause the centering effect to be more
prominent.
The actual vector of the forces will come in one or two forms.
Depending on the particular method of creating the magnet.
Magnets made by the first method will center in the middle of the pole.
Magnets made by the second method (inductive) will center in a ring
around the pole center. (the location depends on the active state of the magnet/variant)





I was fixing a shower-rod, slipped and hit my head on the sink. When i came to, that's when i had the idea for the "Flux Capacitor", Which makes Perpetual Motion possible.

sm0ky2

Magnets that are made by the thermal process
(and thermo-inductive)
will align more 'true'. The Curie temperature relaxes
the flux and allows more atom clusters to align.


Magnets formed by cold induction or by another magnet
will only have partial alignment, and display active state
characteristics. Fluctuations will occur in different locations
within the magnetic material dependent upon its' active state.
Interacting with these fluctuations can change the active state
and this change the physical location of the fluctuations within the
material. (This effect was exploited by John Searl)
Many magnets that have been cut or broken can also acquire
active state characteristics.


Many ring magnets are formed as cylinders, then sliced.
These magnets, when you put a round magnet outside it and
roll it around: will acquire fluctuation points on its' surface.
These points will change location when you roll the other magnet
around the ring.


In your stack you can expect to find the most fluctuation points near
the 1/4 distance from either pole (peaks).
Their location around the circumference will be variant.
You can observe the field density with your viewer before and after
interaction and see how the lines change physical location and the
fluctuations change spots.


By rotating the stack (keeping angle the same) your viewer can show
you the points at the pole peak as well. Though not as prominent, you
can still see "more lines" in some locations than others leading out of the
pole circumference. Your scale most likely will not show you much change
in force when you spin the stack of lower magnets, but a sensitive compass
or magnometer will.

I was fixing a shower-rod, slipped and hit my head on the sink. When i came to, that's when i had the idea for the "Flux Capacitor", Which makes Perpetual Motion possible.

sm0ky2

Assuming a consistent force for experiment:
(ie: don't move the lower stack between tests)
Maintaining the angle of approach - moving towards or away
from the stack will give you different measurements at different
points. Record the distances and measurements.


This way you can determine a "force gradient" over distance.
Not just change in force between point A and point B.
But changes in force at points A1, A2, A3, etc. leading to B.
Take a change in force from say A1 to A2:
The difference between them is your change in Energy.
(caused by the motion)
The + or - sign of this change will be the direction of motion.
+ energy towards the magnet, - energy away from it.
(from our perspective)


The magnitude of the changes can be added up to get a
total change in Energy between A and B.
This change is a proportional conversion of PE to KE or
vice versa.
The energy input or output is the cause or result of this change.
(in your test this is you physically moving the magnet within the field)
I was fixing a shower-rod, slipped and hit my head on the sink. When i came to, that's when i had the idea for the "Flux Capacitor", Which makes Perpetual Motion possible.