Overunity.com Archives is Temporarily on Read Mode Only!



Free Energy will change the World - Free Energy will stop Climate Change - Free Energy will give us hope
and we will not surrender until free energy will be enabled all over the world, to power planes, cars, ships and trains.
Free energy will help the poor to become independent of needing expensive fuels.
So all in all Free energy will bring far more peace to the world than any other invention has already brought to the world.
Those beautiful words were written by Stefan Hartmann/Owner/Admin at overunity.com
Unfortunately now, Stefan Hartmann is very ill and He needs our help
Stefan wanted that I have all these massive data to get it back online
even being as ill as Stefan is, he transferred all databases and folders
that without his help, this Forum Archives would have never been published here
so, please, as the Webmaster and Creator of these Archives, I am asking that you help him
by making a donation on the Paypal Button above.
You can visit us or register at my main site at:
Overunity Machines Forum



Lidmotor's Penny circuit help needed.

Started by Dark Alchemist, September 27, 2013, 02:35:45 AM

Previous topic - Next topic

0 Members and 2 Guests are viewing this topic.

TinselKoala

Another thing: Looking at the specs for the BC337 and comparing to the 2n2222 I don't see much difference except in the voltage handling ability. What happens when you take the exact circuit you show above, with scope settings exactly as you have there, if you change the transistor to a 2n2222, or a 2n2369a, or MPSA18, my personal low-voltage favorite?

I'm asking because I don't have a BC337 on hand, and am not likely to be able to get one.

Dark Alchemist

Quote from: TinselKoala on September 28, 2013, 11:44:42 AM
Another thing: Looking at the specs for the BC337 and comparing to the 2n2222 I don't see much difference except in the voltage handling ability. What happens when you take the exact circuit you show above, with scope settings exactly as you have there, if you change the transistor to a 2n2222, or a 2n2369a, or MPSA18, my personal low-voltage favorite?

I'm asking because I don't have a BC337 on hand, and am not likely to be able to get one.
I literally have a crap load of BC337, lol.  Let me run the sim with a 2n2222 using my changes as Lidmotor's original design would not oscillate.

As far as a current probe in the sim I do not have that but I do have a probe that just spits numbers at you but someone mentioned that wouldn't tell me anything.


Nope, the 2n2222, 2n2369a, or the MPSA18 will oscillate.

Dark Alchemist


TinselKoala

OK, so by setting the trigger as I suggested, the Blue trace vanished? You made no other changes, just setting the trigger?

Now try changing the timebase to 10 or 50 microseconds per division, making no other changes.

In your last post you said,
QuoteNope, the 2n2222, 2n2369a, or the MPSA18 will oscillate.
So I'm confused again. The "nope" part doesn't seem to agree with the "will oscillate" part. Did you mean that "neither" will oscillate, or that they "will not oscillate" or what?
If they _do_ oscillate could you please post a scopeshot using one of them? If they don't oscillate, never mind, just please try the timebase change I suggested above.

ETA: Wait I see you have the "Blue" channel disconnected. Please go step-by-step. Replace your 0.1 ohm resistor, use the Blue channel to monitor the voltage just as you had in your previous shot. Change ONLY the trigger setting, to +0.25V on the Red channel, set to "auto" or "normal".  Then show the screenshot.
Then, change the timebase from 1 us/div to 10 or 50 us/div and show the screenshot. Please only change one thing at a time, because I confuse easily.

TinselKoala

I just checked the JT I showed in the video above. It oscillates at about 14.6 kHz, much much slower than the 3.76 MHz of the Blue trace you showed above. I'm not convinced that your Blue trace really is showing the main JT oscillation of your circuit, nor is the Red trace in your latest scopeshot.

Try this: using the exact setup you have just above, with only the Red Channel A Q1 collector signal shown. Set the trigger on Ch A, rising slope, +0.25 volts, "Auto" or "normal". Now change the timebase in steps. You are showing 1 us/div already, so now look at the signal at 10 us/div, 50 us/div, and 100 us/div, or whatever similar settings your scope allows.