Overunity.com Archives is Temporarily on Read Mode Only!



Free Energy will change the World - Free Energy will stop Climate Change - Free Energy will give us hope
and we will not surrender until free energy will be enabled all over the world, to power planes, cars, ships and trains.
Free energy will help the poor to become independent of needing expensive fuels.
So all in all Free energy will bring far more peace to the world than any other invention has already brought to the world.
Those beautiful words were written by Stefan Hartmann/Owner/Admin at overunity.com
Unfortunately now, Stefan Hartmann is very ill and He needs our help
Stefan wanted that I have all these massive data to get it back online
even being as ill as Stefan is, he transferred all databases and folders
that without his help, this Forum Archives would have never been published here
so, please, as the Webmaster and Creator of these Archives, I am asking that you help him
by making a donation on the Paypal Button above.
You can visit us or register at my main site at:
Overunity Machines Forum



MH's ideal coil and voltage question

Started by tinman, May 08, 2016, 04:42:41 AM

Previous topic - Next topic

0 Members and 4 Guests are viewing this topic.

Can a voltage exist across an ideal inductor that has a steady DC current flowing through it

yes it can
5 (25%)
no it cannot
11 (55%)
I have no idea
4 (20%)

Total Members Voted: 20

Magneticitist

Quote from: Magluvin on May 08, 2016, 08:40:11 PM
There ya go. ;) Resistance is a necessity for current to flow. ;D Lol  ;D

Mags

I have actually always believed this and it's hard for me to think otherwise.
I can't help it no matter how foolish it may seem.

Magluvin

In all this, we havnt considered a load to be included. If we have the ideal supply and ideal wires and just a normal dc motor, then what? The ideal supply produces 12v and the normal motor is rated at 12v. So if current flows, we could run those wires a very long distance with no loss.  So if we had the ideal supply and ideal say twisted pair run out to say 10miles, would there be 12v potential available at the end of those wires and would the motor run? Now I might think that the twisted pair would act like a cap, so there should be potential at the end, 10 miles down the road.

lol, soo if we twisted our wire first and then connected it to the ideal supply, would there be the end of the universe event?  And even if we ran 1 wire N 10 miles and the other S 10 miles to reduce the capacitance as much as possible(and lets idealize that it was done in an ideally empty universe ::) will it ever end) there would still be a capacity. So Boom I suppose. ::)

There must be a need for ideal current limiters?? ??? ::) ;)   Gees. Im going to think about this stuff every time I see or hear the word 'Ideal' ::)

Mags

Magluvin

Quote from: Magneticitist on May 08, 2016, 08:45:36 PM
I have actually always believed this and it's hard for me to think otherwise.
I can't help it no matter how foolish it may seem.

I have said it before also, considering... ;)   Im just lol that someone else finally said it. ;) ;D

Mags

poynt99

Quote from: tinman on May 08, 2016, 08:26:08 AM
So the questions i have for you MH are
1-how is the current time constant calculated for your ideal inductor/
Like any other inductor.

Quote
2-What is the time taken for the current to rise to peak value from T=0,that moment when the ideal voltage of 4 volts is placed across the ideal inductor?.
Indeed this question is germane to the original question, What is your answer?
question everything, double check the facts, THEN decide your path...

Simple Cheap Low Power Oscillators V2.0
http://www.overunity.com/index.php?action=downloads;sa=view;down=248
Towards Realizing the TPU V1.4: http://www.overunity.com/index.php?action=downloads;sa=view;down=217
Capacitor Energy Transfer Experiments V1.0: http://www.overunity.com/index.php?action=downloads;sa=view;down=209

massive

 
the question has 5H , time secs and +/- volts given , and zero volt crossing



1H = current changing @ 1 A per SECOND resulting in emf of 1V across an inductor