Overunity.com Archives is Temporarily on Read Mode Only!



Free Energy will change the World - Free Energy will stop Climate Change - Free Energy will give us hope
and we will not surrender until free energy will be enabled all over the world, to power planes, cars, ships and trains.
Free energy will help the poor to become independent of needing expensive fuels.
So all in all Free energy will bring far more peace to the world than any other invention has already brought to the world.
Those beautiful words were written by Stefan Hartmann/Owner/Admin at overunity.com
Unfortunately now, Stefan Hartmann is very ill and He needs our help
Stefan wanted that I have all these massive data to get it back online
even being as ill as Stefan is, he transferred all databases and folders
that without his help, this Forum Archives would have never been published here
so, please, as the Webmaster and Creator of these Archives, I am asking that you help him
by making a donation on the Paypal Button above.
You can visit us or register at my main site at:
Overunity Machines Forum



MH's ideal coil and voltage question

Started by tinman, May 08, 2016, 04:42:41 AM

Previous topic - Next topic

0 Members and 19 Guests are viewing this topic.

Can a voltage exist across an ideal inductor that has a steady DC current flowing through it

yes it can
5 (25%)
no it cannot
11 (55%)
I have no idea
4 (20%)

Total Members Voted: 20

verpies

Quote from: Pirate88179 on May 12, 2016, 08:28:09 PM
Aluminum, another good conductor, is also diamagnetic.  I have seen videos of a magnet slowly sliding down an Al plate.  Is Bismuth diamagnetic or paramagnetic? I can't remember...it has been a while.
Yes Bismuth is one of the best diamagnets.

The difference between Copper or Aluminum pipe/sheet and Bismuth is that Bismuth will always oppose and repel permanent magnets, while Copper/Aluminum will do so only when these magnets are moving.

verpies

Quote from: Pirate88179 on May 13, 2016, 12:52:10 AM
No, the magnet would not fall as Lenz would be increased proportionally to the increased conductivity of the copper pipe.
If the superconducting ring or plate is "frozen" while the magnet is away then:
the magnet will fall through a superconductive ring that is much larger than the magnet and if the ring's diameter is sufficiently small compared to the diameter of the magnet, then the magnet will bounce.

And if small superconducting ring or a large plate is "frozen" while the magnet is nearby, then:
the magnet will hover over or under the superconducting ring/plate.

Magneticitist

Quote from: verpies on May 13, 2016, 11:12:57 AM
@Magneticist

You should look at that post of mine from another thread.


I have no issue with that representation because it helps to explain a mathematical
way we can calculate charge/discharge using the constant, at the very least. It also
seems like a great presentation so I will definitely give it a look and thank you for
providing it.

I also have no issue with Poynt99's statement :
"Tau has no bearing on whether current can/will flow or not.
The effect it has is how "curvy" the rise of current is, relative to
the timing of your test. With an infinite tau, the curve is going to
be a straight line,"

the issue I have is when trying to imagine what would 'actually'
happen if this 'ideal inductor' question was suddenly made reality.
It gets into the atomic model and the more detailed aspects of ultra
complicated quantum physics where I am so lost in the grand scheme of things
I can't say I really know how to make heads or tails of it..
I see a more paradoxical issue where we just wouldn't be able to
'see' or 'observe' the current in any way in the real world so it might
as well not exist as 'flowing'. My position is almost agreeing that current
will flow, but flow just as much as it wouldn't. I know this doesn't seem
to make any logical sense to others but what am I left to do? beat my
head against the wall until I no longer see it that way? You can't quite
prove to me that current would flow over 0 resistance unless we are
talking mathematical constructs. and even then, you say you can use
that math to prove this theory but with R=0 I don't see how it could
possibly result in any answer that is not 'undefined', even if you claim
we are using formulas that do not even require a relationship with a unit
of resistance. Somewhere along the lines, a unit of resistance has to matter
in quantum mechanics. The only 'constant' which I see available for us to
make the determination that current will flow, is the assumption it would
do so because it does indeed flow with very little resistance.


In all honestly I don't wholeheartedly believe in hardly any of this
electron theory. I give it the respect it deserves by not completely
dismissing it and attempting to gain an understanding of it because
as far as I know it retains a complex level of mathematical continuity
across the board but that doesn't mean I'm ready to completely
and absolutely accept every aspect of these theories.

they are not totally tangible to me and a lot of times
just flat out go against my better judgement and intuition.

if I had a specific capacitor charged to a certain voltage
and said it had discharged to x volts over a period of time,
and someone was to tell me they did the math and that wasn't
possible.. chances are I was wrong somewhere because as I said
it's been figured out to a complex level of mathematical continuity.

but what if I wasn't wrong? what if all my units were correct?
what would be the real reality of my capacitor? would that need
investigation or should it be immediately dismissed as wrong?
what if I so immediately dismissed it as wrong only to overlook
a possibility that the math was not accounting for an additional
variable? what if? an important discovery or revelation could be
made, or a lot of freaking time could be wasted having a severe
brain fart cause a decimal was where it shouldn't be. to each his own.

Magneticitist

Quote from: verpies on May 13, 2016, 11:12:57 AM
@Magneticist

You should look at that post of mine from another thread.

this is great stuff and really the 'gist' of what we should be focusing on regarding
inductor charging.