Overunity.com Archives is Temporarily on Read Mode Only!



Free Energy will change the World - Free Energy will stop Climate Change - Free Energy will give us hope
and we will not surrender until free energy will be enabled all over the world, to power planes, cars, ships and trains.
Free energy will help the poor to become independent of needing expensive fuels.
So all in all Free energy will bring far more peace to the world than any other invention has already brought to the world.
Those beautiful words were written by Stefan Hartmann/Owner/Admin at overunity.com
Unfortunately now, Stefan Hartmann is very ill and He needs our help
Stefan wanted that I have all these massive data to get it back online
even being as ill as Stefan is, he transferred all databases and folders
that without his help, this Forum Archives would have never been published here
so, please, as the Webmaster and Creator of these Archives, I am asking that you help him
by making a donation on the Paypal Button above.
You can visit us or register at my main site at:
Overunity Machines Forum



TD replications

Started by Floor, November 18, 2016, 11:14:23 AM

Previous topic - Next topic

0 Members and 1 Guest are viewing this topic.

gotoluc

Quote from: gotoluc on December 05, 2016, 02:30:47 AM
Thanks for the clarification floor

I'll re-measure the approximate 75 degree of rotation available up to the 90 center to see how it effects the gain.

Luc


Well, I did the test and the results are surprisingly the same 31% gain.
In the previous test 3 the output rotation arm (Ro) traveled 140 degrees and the results were also 31% gain.
See both test data below. First is test 4 and the second is test 3
The disengage in test 4 is unmeasurable (less the 5 grams)


Luc

gotoluc

Quote from: wattsup on December 05, 2016, 07:42:53 AM
@gotoluc

Referring only to your videos 3 with the rectangular neos, I have always liked mechanical puzzles of weight and motion but this device I see is giving me a potential quandary.

You measured your reference data by putting your scale on the tip of each arm and lifting to record the measured "pull" weight at each increment.

But in your experiment the arm is being lifted by and from the center shaft via the length of one neo magnet so it has to fight against the full leverage of the arm, so the actual mechanical process of the experiment is not pulling the arm from the tip as you have tabulated.

Seems to me the base data should be taken at a point on the arm that starts at the shaft and goes not more then half the length of the neo magnet from the shaft since it is the shaft centered neo magnet's responding length that is turning the shaft that is lifting the arm.

What would your opinions be. So I am basically asking "Should the base data be taken at point 1 or 2 on the below drawing?", since for me the lift force required should be greater at point 1 then point 2. Or, am I blind to an obvious simplicity. I do not know for sure and maybe even if the data was taken at point 1, the final ratios would be the same and the final percentage outcome would also be the same.

By the way @gotoluc, your worksmanship is so fine and thanks for your always inquisitive and clear videos and works.

wattsup


Hi wattsup


the reason for the distance on the arms is I originally built it to measure foot pound of torque.
To my knowledge this is the way to measure foot pound or in my newer tests foot grams.


Hope this helps?


Luc

Sacregraal

Hello Gotoluc ,

I follow your work for many years now , and it's always a great pleasure to see your vidéos ...

Looking at your 3th vidéo for the TD réplication , I think there is a measure missing .
You've got 3 Step
1 - you engage the linéare arm ( it's the first data for the input work )
2 - you mesure the output torque ( it 's the only output work )
3 - you disengage the linéare arm ( it' the seconde data for the input work )

but
4 - you need to reset the position of the ouput arm for complete the cycle , i will be curious of the work it need ... This is for me a third data for the input work )

Cheers
SG

Floor

QUOTE from DrJones
"So the work = mechanical energy = Torque x Theta, not just Torque alone.
I'm concerned that Theta has been left out in the analysis so far in this thread -
and hope that Theta will be included in the future. "END QUOTE

Two questions

1. The conversion of torque to work is needed,
          in order
to state the actions in terms of Joules of work. Correct ? 

2. But  that conversion to joules, will not change the RATIOS
of the measurements to each other, will it ?

                        thanks for being on board
                                   floor

Floor

@Gotoluc

DrJones makes a good point of clarification.

The reasons for my usage of round levers (pulleys) and conversions
of degrees of rotation into the linear fall of the weights are probably
pretty clear at this point.

I stopped short of the conversion of grams into newton, averaging, and
calculations of joules. 

But even, simply the degrees times weight of each set compared to each other
will still give the same ratios ? as  their conversions to joules will to each other ???

I have asked DrJones this question ?

PS
      Thanks for the additional data
                       
                           floor