Overunity.com Archives is Temporarily on Read Mode Only!



Free Energy will change the World - Free Energy will stop Climate Change - Free Energy will give us hope
and we will not surrender until free energy will be enabled all over the world, to power planes, cars, ships and trains.
Free energy will help the poor to become independent of needing expensive fuels.
So all in all Free energy will bring far more peace to the world than any other invention has already brought to the world.
Those beautiful words were written by Stefan Hartmann/Owner/Admin at overunity.com
Unfortunately now, Stefan Hartmann is very ill and He needs our help
Stefan wanted that I have all these massive data to get it back online
even being as ill as Stefan is, he transferred all databases and folders
that without his help, this Forum Archives would have never been published here
so, please, as the Webmaster and Creator of these Archives, I am asking that you help him
by making a donation on the Paypal Button above.
You can visit us or register at my main site at:
Overunity Machines Forum



TD replications

Started by Floor, November 18, 2016, 11:14:23 AM

Previous topic - Next topic

0 Members and 2 Guests are viewing this topic.

gotoluc

Quote from: Floor on December 03, 2016, 11:41:51 PM
1. A few degrees of rotation  of RO toward 90 deg. off from parallel with SL
(3 to 5 deg. ?)... is the optimal starting position for RO (in the same direction
it will rotate when RO's force is measured).

Not sure I understand your suggestion

Quote from: Floor on December 03, 2016, 11:41:51 PM
2.  But also RO must hit it's stop at 90 deg. off from parallel to SLand no farther.

Are you recommending the output torque arm (RO) should stop at the center of the torque cycle? (see chart below)
If so, why?... other then it would be next to free for the input torque arm to return to starting point

Quote from: Floor on December 03, 2016, 11:41:51 PM

A full 90 degs. of rotation will not be acheived.

Why not?

Quote from: Floor on December 03, 2016, 11:41:51 PM
3. Im not certain that the counter weight on the RO scale indicator as is.....
is giving the needed effect.

If it is, then,
      when there are no magnetic force interactions Between RO and SL (one magnet removed ?)
the RO scale indicator will ballance (have no tendancy to rotate by gravity's pull at any
degree of it's rotation).

The counter weight was perfectly adjusted to create a zero gravity influence where ever the rotation arm is positioned. It was adjusted prior to bringing it in proximity of any ferromagnetic material or magnets.


Thanks


Luc

Floor

@ Gotoluc
QUOTE from Gotoluc
"Are you recommending the output torque arm (RO) should
stop at the center of the torque cycle? (see chart below)" END QUOTE
    yes

QUOTE from Gotoluc
"If so, why?... other then it would be next to free for the
input torque arm to return to starting point
END QUOTE

No its just because it would be next to free for the input torque
arm to return to starting point.  Thanks
.....................................................................
QUOTE from Gotoluc
"Not sure I understand your suggestion"
END QUOTE

In general, the maximum rotation motivating force is available
during the first part of the rotation....  this is not true during the
VERY FIRST FEW degrees of  rotation away from exact parallel.
                because
The rotation motivating forces toward clock wise rotation are in
balance with the rotation motivating forces toward counter clock
wise, when RO is exactly parallel to SL

This cw to ccw balance shifts greatly.... within a few degrees of
rotation from exact parallel.

While

The linear motivating force (which pushing SL away) is at its absolute
maximum potential when RO and SL are exactly parallel.  This linear
force decreases substantially with a few degrees of rotation.

There is no need to do input against this absolute maximum, linear repelling
force, when the RO out doesn't give back its maximum until after
a few degrees of rotation from exact parallel.

                  thanks luc
                       best wishes
                                  floor

gotoluc

Thanks for the clarification floor


I'll re-measure the approximate 75 degree of rotation available up to the 90 center to see how it effects the gain.


Luc

DrJones

  Mechanical work - which is one form of energy - is defined in basic terms as
Work = Force X Distance moved.


  For a rotating object, we apply a torque to get it to move/rotate.  Also, the distance moved = distance along a portion of a circle called an "arc", which = R x Theta (where the angle Theta is measured in radians= actually, unitless).
Then
Work = Force X Distance moved  = Force x R x Theta  = Torque x Theta, [/size]


So the work = mechanical energy = Torque x Theta, not just Torque alone.


I'm concerned that Theta has been left out in the analysis so far in this thread - and hope that Theta will be included in the future.

wattsup

@gotoluc

Referring only to your videos 3 with the rectangular neos, I have always liked mechanical puzzles of weight and motion but this device I see is giving me a potential quandary.

You measured your reference data by putting your scale on the tip of each arm and lifting to record the measured "pull" weight at each increment.

But in your experiment the arm is being lifted by and from the center shaft via the length of one neo magnet so it has to fight against the full leverage of the arm, so the actual mechanical process of the experiment is not pulling the arm from the tip as you have tabulated.

Seems to me the base data should be taken at a point on the arm that starts at the shaft and goes not more then half the length of the neo magnet from the shaft since it is the shaft centered neo magnet's responding length that is turning the shaft that is lifting the arm.

What would your opinions be. So I am basically asking "Should the base data be taken at point 1 or 2 on the below drawing?", since for me the lift force required should be greater at point 1 then point 2. Or, am I blind to an obvious simplicity. I do not know for sure and maybe even if the data was taken at point 1, the final ratios would be the same and the final percentage outcome would also be the same.

By the way @gotoluc, your worksmanship is so fine and thanks for your always inquisitive and clear videos and works.

wattsup