Overunity.com Archives is Temporarily on Read Mode Only!



Free Energy will change the World - Free Energy will stop Climate Change - Free Energy will give us hope
and we will not surrender until free energy will be enabled all over the world, to power planes, cars, ships and trains.
Free energy will help the poor to become independent of needing expensive fuels.
So all in all Free energy will bring far more peace to the world than any other invention has already brought to the world.
Those beautiful words were written by Stefan Hartmann/Owner/Admin at overunity.com
Unfortunately now, Stefan Hartmann is very ill and He needs our help
Stefan wanted that I have all these massive data to get it back online
even being as ill as Stefan is, he transferred all databases and folders
that without his help, this Forum Archives would have never been published here
so, please, as the Webmaster and Creator of this Forum, I am asking that you help him
by making a donation on the Paypal Button above
Thanks to ALL for your help!!


Induction motors and capacitors lowers amps "consumption"

Started by Kyoat, January 19, 2009, 03:45:21 PM

Previous topic - Next topic

0 Members and 1 Guest are viewing this topic.

hoptoad

Quote from: Kyoat on January 19, 2009, 03:45:21 PM
We hooked the motor (without caps) up to a 60 lb. flywheel (useing gear reduction) and verified the flywheel RPM's with a digital RPM strobe meter at 697 RPM's. drawing a little over 7 amps.  While strobe still running at 697 we shut down the motor.  Clocking the time from a dead start to full RPM's at 5 seconds.   

Then we added 219 uf 370 Vac capacitor's and ran the above test again.  This time from a dead stop to full RPM's was 2.5 seconds at 1.34 amps.  The primary coils were showing 7.30 amps and the capacitors were showing 8.35 amps. Providing more torque and 50% faster start-up speed using 80% less power "consumption". 

The updated data you posted is very interesting and positive, indicating a step towards increased efficiency and reduction of power consumption.

The figures you gave, if I read them right, show a definite higher efficiency if the torque of the motor/s is the same, or higher, than without the cap tuning.

Going back to your first post above, your observations are very promising because they indicate an increase in starting and running torque as well as an electrical power saving.

If the apparent electrical power saving after PFC is 10%, but there is actually an increased torque, then the total energy savings would be greater for a given load compared to a non-capped configuration.

Your real energy savings in terms of total system energy translation, may be as high as 15 per cent (or possibly more) for a specific nominal load on the motor.!

In your flywheel experiment above, judging by the fact that the startup to full RPM time was halved using the capped system, I suspect that comparative Torque measurements of both capped and non-capped systems, under varying loads, will also reveal positive data which would add even greater credence to the electrical savings data.

Cheers and KneeDeep  :)

pese

Quote from: gyulasun on January 22, 2009, 07:02:30 PM
Hi Kyoat,

very good results, thanks for sharing these. 

Have you heard of Hector's rotoverter activities?  He makes 3PH motors resonant on 60 (or 50) Hz by tuning them by capacitor banks and then mechanically drives another originally 3PH motor to work as a generator, also tuned by capacitors.  He also tries to utilize reactive power with interesting circuits.  See this link:
http://www.panaceauniversity.org/RV.pdf 

http://peswiki.com/index.php/Directory:Rotoverter:Replications:Deliverance 

http://www.panacea-bocaf.org/rotoverter.htm

Problem is when they want load the generator or the prime mover, the system detunes and would need a continous control to keep it on resonance in the function of the changing load. 

Keep up good work!

rgds,  Gyula

@ Gyula
Yes you have find the problem..
I learned lot of years ago (with RF resonance coils)
that an Induction (and also resonance frequency)
CHANGED if  ih hold an magnet to the core .  The INDUCTION
change.   The same you find at Low frequencies.on  Transformers, Chokes, Motors enz. , if you produce an "flux" in the core materials as soft-iron laminated iron , ferrit, enz.

What to do?

tune all circuits to resonance UNDER LOAD !
If you do , without load, you save nothing, because the "device"
must work and save input.

G.Pese
Skype Member: pesetr (daily 21:00-22:00 MEZ (Berlin) Like to discussing. German English Flam's French. Special knowledges in "electronic area need?
ask by messey, will help- so i can...

Kyoat

One area where this application may very well have a high probability of working is our next experiment. (sounds good anyway)

Knowing that we can get the amp "consumption" down and at the same time increasing the torque, This application, while it doesn't gain you much against the electrical grid, where they already have you "screwed" to paying regardless with their PFC.  A practical use would be where you have a battery bank to an inverter to run your motor (at reduced amps and increased torque) to run your charging circuit.  Under conventional methods this doesn't work out to well.  But it just might in this case under the reduced amp load on the inverter along with the increased torque of the motor. 

And of course, if it does work, and can produce an "excess" of power to boot, all the better.  It just might be a great "cheap" way to charge your batteries.

We have quite a few households here in Alaska who operate on battery-inverter-solar-wind- etc. because the local power Company want 10's of thousands of dollars just to run their power lines to their location.  And who can afford that?  So for these families it's not just a wish to be off the grid, they have no choice!  But if we can make a workable system for these people first, then we too can join there ranks and kick the grid "habit".
   We have a 3000 watt continuous 7000 watt surge full sign wave inverter on order to test this theory.  So as soon as it arrives and we are able to test drive it, we will sharing the data with all to evaluate.  Maybe some day real soon one of us will break the barrier that will allow us the opportunity to say good buy to the electric grid and PFC for good!  I don't know about you people, but my last months electric bill was over $350 for 32 days! That's almost $11 a day.  My natural gas bill was almost as high at $300.   KYOAT
Remember, Wilbur and Orivil Wright, against all odds demonstrated to the world that with a little tinkering and alot of thought, that man could fly.  All the while all the "educated men of the world" said man would never leave the ground.  97% of their calculations are still used today.  Not bad for two bycycle repairmen. 3% error!

Kyoat

Quote from: Kyoat on January 26, 2009, 01:40:31 PM
First off I'd like to thank Hoptoad for bringing an interesting question to the table.  A question about watts and the AC power factor.
One of our members has a "kill a watt" meter, and so we incorporated it into our load test.

Here is some of the test data;    (AD = amp draw) (#1P = #1 primary coil amps) (#2P = #2 Primary amps) (TP = total primary amps)
                                               (#1C = #1 primary cap amps present)  (#2C = #2 primary cap amps present)

#1 Emerson motor; No load, and no cap circuit
9.51 AD     #1P 3.60         #2P 3.50         TP 7.10    .................................................... 216 watts

#1 Emerson motor with 60# flywheel load, with no cap circuit
9.47 AD     #1P 3.55         #2P 3.56         TP 7.04    .................................................... 273 watts

#1 Emerson motor with 60# flywheel, and automotive (air conditioner) air compressor with no cap circuit
9.44 AD     #1P 3.48         #2P 3.56         TP 7.04   ....................................................  287 watts

________________________________________________________________________________________

#1 Emerson motor with 219 uf cap circuit, No load
2.08 AD     #1P 3.61         #2P 3.45         TP 7.06                                                         190 watts

#1 Emerson, 219 uf circuit, 60 lb flywheel load
2.51 AD     #1P 3.50         #2P 3.44         TP 6.94     #1C 4.73    #2C 4.41   TC 9.41        244 watts

#1 Emerson, 219 uf circuit, flywheel and air compressor load
2.61 AD     #1P 3.60        #2P 3.33         TP 6.93     #1C 4.64     #2C 4.55   TC 9.19        258 watts
________________________________________________________________________________________

#1 Emerson, No cap circuit, with flywheel and compressor
air output from compressor restricted until Emerson amp draw climbed above 10 amp draw

10.90 AD    #1P 3.99       #2P 3.94       TP 7.93  ...................................................       765 watts

same air restriction as above, and while motor was still running added 219 uf to primary coils.
6.50 AD     #1P 4.00       #2P 3.83        TP 7.83 ...................................................        720 watts

Not much of a gain (45 watts) when the power factor is added into the equation.

We were wondering if any one has tried converting the AC-in with a couple diodes to create a DC pulse to run an induction motor?
It's my understanding that they run well on a DC pulse.  But I was wondering how the PF would "see" this aspect of a circuit?
We were thinking, that you just need to "fool" the PF sensor some how in not seeing or feeling what's going on further down the line if it's even possible.  I have a feeling that "they" already have most bases covered to make sure that we "pay" thru the nose for our electricity.

___________________________________________________________________________________________________

In a separate test we got the following results: (all readings from watt meter)

#1 Emerson motor No cap circuit, no load ................... 9.69 amps ......................... at 215 watts
#1 Emerson motor, 219uf cap circuit, no load .............. 2.16 amps ......................... at 204 watts

#2 Delta motor, No caps, no load ...............................  4.09 amps ........................ at   95 watts
#2 Delta motor, 150uf cap circuit, no load .................... 4.13 amps ........................ at   96 watts

#3 Heater, No caps ...................................................  4.02 amps .......................  at 485 watts
#3 Heater, 150uf cap series-parallel circuit...................  3.50 amps .......................  at 360 watts

                       Total with no cap circuit:....................... 17.80 amps ...... Total ......... at 795 watts
                       Total with cap circuits .........................   9.79 amps .....  Total ........  at  660 watts

difference between no-cap circuit and a cap circuit:          8.01 amp drop                    135 watt drop

___________________________________________________________________________________________________

This test was run with the following:

#1 Emerson motor with 219uf cap circuit on #1Primary coil only, no load
#2 Delta motor connected to Emerson #2Primmary coil, 150uf cap circuit on delta
With just these two motors connected together: ...............7.30 amps ....................... at 382 watts

      Difference between separate verses "together"             1.01 amp increase            and 82 watt increase


#1 Emerson motor with 219uf on #1P cap circuit, no load
#2 Delta motor connected to Emerson #2 Primary coil, No cap circuit, no load
#3 Heater with 150uf series-parallel cap circuit on L1, heater connected to Delta primary coils.
With all three connected together: ..................................  7.42 amps ..................     at 672 watts

Difference between separate verses connected "together"    2.33 amp drop ...........      at   13 watt increase!!








The above test data unfortunately IS INCORRECT!
While we were reporting "apparent watts" we were not reporting "VAR watts" or PF (Power factor)
We discovered this mistake today, so we reran the following test for all to see. (SORRY FOR THE MISTAKE)

The following test was using the #1 Emerson motor (note: we fine tuned the capacitance from 219uf down to 207uf with use of the watt meter)

                                     apparent       VAR                PF
  CAPS:       Amps          watts           watts          (power factor)

   none          9.63            203             1146                 .18        Emerson, no caps, no load
   207uf         2.01            192               237                 .79        Emerson, 207uf, no load              79.3% drop in VAR watts "consumption"      --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --
   none          9.48            254             1123                 .22        Emerson w/flywheel, no caps
   207uf         2.38            244               283                 .85        Emerson w/flywheel, 207uf           74.8% drop in VAR watts
     --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  -- 
   none         10.63           709              1231                .55        Emerson w/flywheel, no caps, compressor not under load
   207uf          5.74           652               666                 .97        Emerson w/flywheel, 207uf, compressor-no-load       
                                                                                                                                              45.9% drop in VAR watts    --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --
   207uf          7.50          860                851                 .98       Emerson w/flywheel, 207uf, compressor under "80 PSI load"

NOTICE: that the "closer" the VAR-watts comes to matching the Apparent-watts the closer the power factor comes to "1"  and that even under such a heavy load of moving a 60 lb flyhweel AND running a compressor to 80 PSI load we still saw a 46% drop in watt consumption. 
We didn't want to subject our watt meter (max 15 amps) to the high amps that would have been present if there were no capacitance on this last load.  So we compared it to the one just above it with no caps. (45.9% drop from 1231)


Temperature readings were taken on Emerson motor during all testing.  The temperature remained at or below 98.5 degrees F.
The cylinder head of the compressor reached 120 degrees F.
  ______________________________________________________________________________________________________________________

  The following test was also re-run:

In this test we first took readings from each motor separately, and added them together to get a total "consumption of watts" to compare with the results of the two motors connected together.

Emerson:  207uf       2.06 amps        200 A-watts       250 VAR watts        .80 Power factor
Delta:       152uf       1.64 amps         168 A-watts      198 VAR watts        .85 power factor
                              _________        __________       ____________
  Total:                     3.70 amps        368 A-watts       348 VAR watts

Emerson with the Delta wired to the #1primary of Emerson motor.
                              3.59 amps         365 A-watts       430 VAR watts        .84 power factor

So therefore there's no real gain by connecting motors together such as this, but the REAL GAIN can be seen in the above example by placing the proper amount of capacitance across the primary coils of an induction motor.
Remember, Wilbur and Orivil Wright, against all odds demonstrated to the world that with a little tinkering and alot of thought, that man could fly.  All the while all the "educated men of the world" said man would never leave the ground.  97% of their calculations are still used today.  Not bad for two bycycle repairmen. 3% error!

hoptoad

Quote from: Kyoat on February 01, 2009, 10:17:15 PM
The above test data unfortunately IS INCORRECT!
While we were reporting "apparent watts" we were not reporting "VAR watts" or PF (Power factor)
We discovered this mistake today, so we reran the following test for all to see. (SORRY FOR THE MISTAKE)

The following test was using the #1 Emerson motor (note: we fine tuned the capacitance from 219uf down to 207uf with use of the watt meter)

                                     apparent       VAR                PF
  CAPS:       Amps          watts           watts          (power factor)

   none          9.63            203             1146                 .18        Emerson, no caps, no load
   207uf         2.01            192               237                 .79        Emerson, 207uf, no load              79.3% drop in VAR watts "consumption"      --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --
   none          9.48            254             1123                 .22        Emerson w/flywheel, no caps
   207uf         2.38            244               283                 .85        Emerson w/flywheel, 207uf           74.8% drop in VAR watts
     --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  -- 
   none         10.63           709              1231                .55        Emerson w/flywheel, no caps, compressor not under load
   207uf          5.74           652               666                 .97        Emerson w/flywheel, 207uf, compressor-no-load       
                                                                                                                                              45.9% drop in VAR watts    --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --
   207uf          7.50          860                851                 .98       Emerson w/flywheel, 207uf, compressor under "80 PSI load"

NOTICE: that the "closer" the VAR-watts comes to matching the Apparent-watts the closer the power factor comes to "1"  and that even under such a heavy load of moving a 60 lb flyhweel AND running a compressor to 80 PSI load we still saw a 46% drop in watt consumption. 
We didn't want to subject our watt meter (max 15 amps) to the high amps that would have been present if there were no capacitance on this last load.  So we compared it to the one just above it with no caps. (45.9% drop from 1231)


Temperature readings were taken on Emerson motor during all testing.  The temperature remained at or below 98.5 degrees F.
The cylinder head of the compressor reached 120 degrees F.
  ______________________________________________________________________________________________________________________

  The following test was also re-run:

In this test we first took readings from each motor separately, and added them together to get a total "consumption of watts" to compare with the results of the two motors connected together.

Emerson:  207uf       2.06 amps        200 A-watts       250 VAR watts        .80 Power factor
Delta:       152uf       1.64 amps         168 A-watts      198 VAR watts        .85 power factor
                              _________        __________       ____________
  Total:                     3.70 amps        368 A-watts       348 VAR watts

Emerson with the Delta wired to the #1primary of Emerson motor.
                              3.59 amps         365 A-watts       430 VAR watts        .84 power factor

So therefore there's no real gain by connecting motors together such as this, but the REAL GAIN can be seen in the above example by placing the proper amount of capacitance across the primary coils of an induction motor.

The revised figures shown are very positive. Good work, and thanks for the updated info.
Cheers from Hoptoad