Overunity.com Archives is Temporarily on Read Mode Only!



Free Energy will change the World - Free Energy will stop Climate Change - Free Energy will give us hope
and we will not surrender until free energy will be enabled all over the world, to power planes, cars, ships and trains.
Free energy will help the poor to become independent of needing expensive fuels.
So all in all Free energy will bring far more peace to the world than any other invention has already brought to the world.
Those beautiful words were written by Stefan Hartmann/Owner/Admin at overunity.com
Unfortunately now, Stefan Hartmann is very ill and He needs our help
Stefan wanted that I have all these massive data to get it back online
even being as ill as Stefan is, he transferred all databases and folders
that without his help, this Forum Archives would have never been published here
so, please, as the Webmaster and Creator of these Archives, I am asking that you help him
by making a donation on the Paypal Button above.
You can visit us or register at my main site at:
Overunity Machines Forum



Getting energy from asymmetry of the magnetic field experiment

Started by ayeaye, November 19, 2019, 11:10:15 AM

Previous topic - Next topic

0 Members and 2 Guests are viewing this topic.

citfta

Ayeaye,


I hope you don't mind if I make a couple of suggestions.  You need to establish what the frictional drag is.  You need to do a set up with your scales and the movable magnet well away from the other magnet.  The next thing you need to consider is that there are two kinds of friction.  There is static friction also called stiction.  You can measure that by slowly increasing the pull of the scales until the movable magnet just starts to move.  In other words you want to measure how much force it takes to get the movable magnet moving.  Once the magnet starts to actually move the frictional forces drop considerably if the surface is pretty slick.  Once the magnet is moving you can then read your scale to see what the sliding friction actually is.


Then after you have recorded those values you can go back and redo your experiment with the fixed magnet in place.  And then you can more accurately calculate the actual forces involved.


Respectfully,
Carroll

ayeaye

On slippery dry surfaces the static friction shouldn't be much greater than the friction when moving, but what the difference is, this can be measured too, by putting some weight on the moving surface with no magnets.

I measured friction when moving my coffee mug on the table, that's glass on plastic. It started to move with 0.35 Newtons, and continued to move with 0.35 Newtons. I moved it slowly. I found no static friction greater than friction when moving.

What is likely true though is that when the surface is covered by some liquid, such as oil in ball bearings, then the friction likely decreases when the movement starts, because the moving object kind of glides on the liquid. The static friction is also greater when the surface is anyhow sticky.

I'm waiting for opinions, is it ok to do the experiment in that way, or should it be done in another way.


ayeaye

A new and improved video of the experiment is now up  https://archive.org/details/asymmsurf2 . I have yet to do the calculations.

It appeared that a greater distance away from the neutral position, the other pole of the small magnet starts to attract to the other pole of the big magnet. It stands like in the air. Nothing can be done to improve that. I wanted to use things like iron nut that doesn't have two poles, but forces were too small.

I'm sorry, it's not the best quality, better if camera were in the fixed position, etc. But one goes with what one has. Replicate this experiment and do it better.

How am i going to get the measurements? I will measure the number of pixels horizontally with gimp, between the magnet and some mark, on screenshots. Gimp shows x and y in pixels, of the cursor position. Knowing that the diameter of the magnet is 10 mm. I also consider the angle of view when getting the measurements of the spring scales. Not the best but, for the first time it's good enough.


ayeaye

The result was not what i expected, it appears that the magnet gets more energy at the left side, but with this linear movement it may be so, and it corresponds to how the magnets were tilted in my other experiment. Something like field lines that go to the other pole, bend away faster, and thus the force at the right side decreases much faster, one can clearly see that in the video.

That confirms my this experiment  https://archive.org/details/Flcm3  in a measured way.

The following was measured from the video. At both sides the movement is considered so long, that at the end of it there was no measurable force to the magnet.

At the right side the magnet moved 3.57 mm with the force 0.8 N, and 2.29 mm with the force 1.0 N, thus energy at the right side was 5.15 mJ.

At the left side the magnet moved 17.43 mm with the force 0.6 N, and 6.71 mm with the force 0.4 N, thus energy at the right side was 13.14 mJ.

The force when moving was 1.2 N at the right side, and 0.8 N at the left side. Considering that the force when moving was constant, then the forces considering friction were the following.

At the right side, first 3.57 mm -- ( 0.8 + 1.2 ) / 2 = 1 N, friction 0.2 N, 3.57 mJ, next 2.29 mm -- ( 1 + 1.2 ) / 2 = 1.1 N, friction 0.1 N, 2.52 mJ .

At the left side, first 17.43 mm -- ( 0.6 + 0.8 ) / 2 = 0.7 N, friction 0.1 N, 12.20 mJ, next 6.71 mm -- ( 0.4 + 0.8 ) / 2 = 0.6 N, friction 0.2 N, 4.03 mJ .

Thus the energy at the right side was 6.09 mJ, and the energy at the left side was 16.23 mJ, 10.14 mJ more.

By these calculations, only 4 mJ goes to friction during all movement through the field, 6 mJ should be left. Thus the magnet should go through all the field when starting from the left, and gain speed. Yet, when releasing the magnet from the beginning of the field at left, it stops at the neutral position. I have not tried to make it to go through with an initial speed.

What i would like the most, is someone to replicate this experiment, many thanks.


sm0ky2

Think of a balloon
When you push in one side the other bulges out
Press it against water one side gets flat the other
gets bigger.


Pull on a piece and the other side goes inwards.
the ends change shape too.


If you have a viewer that is larger than your magnet
you can see the entire field and how it changes shape.


You can also make a "tray" out of thin sheet of clear plastic
And sprinkle filings on top, thinly so you can see below
Then play with the field.

They are never truly symmetrical.
One side is always stronger by a tiny bit
Even with factory magnets that are "identical".
Higher priced ones can get close but never perfect.


anything we do to one side changes the other.
There's always the same 'total field strength'.
Except in one of two discrete instances:
In one case an attracting field of sufficient strength
can dominate the magnetism of the original magnet
and temporarily "nullify" it. Or in other words, the
field strength temporarily approaches 0.
In the opposite case a repelling field can overpower
the magnetism and "flip it" instantaneously propagating
a field exponentially greater than the two fields combined.
By exploiting either of these discrete cases
(usually with the aid of a 3rd approaching field)
Magnetic switches can be constructed for any number of
purposes.


In case 1: switching "off" one magnet allows the dominant
field to occupy the same space, for a duration, then the other
magnet can return to its' original state.
A mechanically driven magnetic motor can be constructed.
Turning mechanical oscillations into rotational force.


In case 2: "flipping" the fields can drive a rotational force of
mind perplexing power for it's size.
And was used to power a Magnetic Jet Engine at Lockheed
Based on patent 4151431


To understand it, see also patents: 5402021 , and 4877983


https://youtu.be/o6F9I5OiSTE
I was fixing a shower-rod, slipped and hit my head on the sink. When i came to, that's when i had the idea for the "Flux Capacitor", Which makes Perpetual Motion possible.