Overunity.com Archives is Temporarily on Read Mode Only!



Free Energy will change the World - Free Energy will stop Climate Change - Free Energy will give us hope
and we will not surrender until free energy will be enabled all over the world, to power planes, cars, ships and trains.
Free energy will help the poor to become independent of needing expensive fuels.
So all in all Free energy will bring far more peace to the world than any other invention has already brought to the world.
Those beautiful words were written by Stefan Hartmann/Owner/Admin at overunity.com
Unfortunately now, Stefan Hartmann is very ill and He needs our help
Stefan wanted that I have all these massive data to get it back online
even being as ill as Stefan is, he transferred all databases and folders
that without his help, this Forum Archives would have never been published here
so, please, as the Webmaster and Creator of these Archives, I am asking that you help him
by making a donation on the Paypal Button above.
You can visit us or register at my main site at:
Overunity Machines Forum



MH's ideal coil and voltage question

Started by tinman, May 08, 2016, 04:42:41 AM

Previous topic - Next topic

0 Members and 6 Guests are viewing this topic.

Can a voltage exist across an ideal inductor that has a steady DC current flowing through it

yes it can
5 (25%)
no it cannot
11 (55%)
I have no idea
4 (20%)

Total Members Voted: 20

tinman

 author=MileHigh link=topic=16589.msg483533#msg483533 date=1462796493]
 



QuoteYou are just making phony dismissive arguments that take you off track.  The point of the exercise is perfectly clear:  To understand how an inductor works.

No MH. You are making claims you cannot back up,as you do not have access to an ideal inductor.

QuoteA real inductor can be 99.99% identical to an ideal inductor.

99.99% of infinity is an infinite amount away from ideal MH. This may shock you ,but the difference between 99.99% and absolute can be extremely large.
When i asked what the L/R time constant was,you said there isnt one.
With your non ideal coil(being the one that is 99.99% close to ideal)there is an L/R time constant,and so that coil has a finite L/R time constant,where as the ideal coil has either a time constant of 0,or it is infinite. These two values are far from your 99.99% close enough is near enough coil,as it is not even close.

Like i said,you should have thought about your question a little better.

QuoteIdeal voltage sources exist right now within certain limitations.  A good bench power supply is an ideal voltage source.  A car audio amplifier is an ideal voltage source that can output The Star Spangled Banner as an ideal voltage.  I explain that all on the other thread.

They are not ideal at all.
An ideal voltage dose not change--at all,when a load is placed across it-not even by .0000001 of a volt. The ideal power supply would need an ideal transformer,and ideal FWBR,and all other components would have to be ideal--including the power station,the grid supply,and the meter on your house.
All these factors you fail to take into account when you stated an ideal voltage and an ideal inductor.

QuoteThe real-world test can easily be done as explained on the other thread.

You cannot do a real world test on fictional components and values.

QuoteThe only limitation is that the real-world inductor will behave a tiny smidgen differently from the ideal inductor.

No-the difference is !infinite!--you just dont get this,do you ?.


Brad

poynt99

Quote from: tinman on May 09, 2016, 04:22:41 AM
If the time constant is infinite for maximum current through the ideal inductor,then that means that no current flows through the inductor--ever,because if it takes an infinite amount of time to reach maximum current flow through the coil,then it also takes an infinite amount of time to reach a 10% value of maximum current flow through the ideal inductor,and it takes an infinite amount of time to reach 1% of the maximum amount of current flow through the ideal inductor--and so on. So it will take an infinite amount of time before current even starts to flow--so there will never be any current flow through the ideal inductor.
;)

My blown universe post was a bit of a ruse. In fact it implied the opposite of what would theoretically happen, that is, "nothing".
question everything, double check the facts, THEN decide your path...

Simple Cheap Low Power Oscillators V2.0
http://www.overunity.com/index.php?action=downloads;sa=view;down=248
Towards Realizing the TPU V1.4: http://www.overunity.com/index.php?action=downloads;sa=view;down=217
Capacitor Energy Transfer Experiments V1.0: http://www.overunity.com/index.php?action=downloads;sa=view;down=209

poynt99

Quote from: tinman on May 09, 2016, 12:31:00 AM
How do you calculate the L/R time constant, when there is no R
L/0=infinite
question everything, double check the facts, THEN decide your path...

Simple Cheap Low Power Oscillators V2.0
http://www.overunity.com/index.php?action=downloads;sa=view;down=248
Towards Realizing the TPU V1.4: http://www.overunity.com/index.php?action=downloads;sa=view;down=217
Capacitor Energy Transfer Experiments V1.0: http://www.overunity.com/index.php?action=downloads;sa=view;down=209

poynt99

A sim of an ideal V source across an ideal inductor will crash the sim.

A tiny bit of resistance must be added as the computational resolution is finite.
question everything, double check the facts, THEN decide your path...

Simple Cheap Low Power Oscillators V2.0
http://www.overunity.com/index.php?action=downloads;sa=view;down=248
Towards Realizing the TPU V1.4: http://www.overunity.com/index.php?action=downloads;sa=view;down=217
Capacitor Energy Transfer Experiments V1.0: http://www.overunity.com/index.php?action=downloads;sa=view;down=209

MileHigh

Brad:

<<< No-the difference is !infinite!--you just dont get this,do you ?. >>>

You are just getting belligerent for no reason and you are twisting your logic and not really making sense.

I said that a real-world coil can be 99.99% identical in behaviour to an ideal coil.  That means the difference in their behaviour on the bench will be one part in 10,000.  That's pretty damn similar.

Any good bench power supply with a big capacitor on the output, a huge transformer or huge switching power supply, and a well-designed negative feedback control system to maintain a constant output voltage will be 99.99% identical to an ideal voltage source so the same argument applies.

The point being again that discussing ideal coils or ideal voltage sources is not far fetched at all.

This is the real topic of discussion:  a) What is inductance?  b) Demonstrate your understanding of inductance by solving for the current for an ideal inductor in a simple circuit.

That is what you need to focus on.

MileHigh