Overunity.com Archives is Temporarily on Read Mode Only!



Free Energy will change the World - Free Energy will stop Climate Change - Free Energy will give us hope
and we will not surrender until free energy will be enabled all over the world, to power planes, cars, ships and trains.
Free energy will help the poor to become independent of needing expensive fuels.
So all in all Free energy will bring far more peace to the world than any other invention has already brought to the world.
Those beautiful words were written by Stefan Hartmann/Owner/Admin at overunity.com
Unfortunately now, Stefan Hartmann is very ill and He needs our help
Stefan wanted that I have all these massive data to get it back online
even being as ill as Stefan is, he transferred all databases and folders
that without his help, this Forum Archives would have never been published here
so, please, as the Webmaster and Creator of these Archives, I am asking that you help him
by making a donation on the Paypal Button above.
You can visit us or register at my main site at:
Overunity Machines Forum



Getting energy from asymmetry of the magnetic field experiment

Started by ayeaye, November 19, 2019, 11:10:15 AM

Previous topic - Next topic

0 Members and 3 Guests are viewing this topic.

sm0ky2

Just out of curiosity:
The force measured between magnets:::


Was this the 'break away' force?
Meaning the reading on the scale when
the magnets are stuck together then forced
apart?


Or is this the maximum "pull force" when they
are brought to (not quite) touching?

It's not going to affect the calculations much,
because a fairly accurate proportionality can be
established by your numbers. We don't necessarily need to know the
magnitudes involves.





I was fixing a shower-rod, slipped and hit my head on the sink. When i came to, that's when i had the idea for the "Flux Capacitor", Which makes Perpetual Motion possible.

sm0ky2

As long as the measurements were taken at the same distance
You can safely assume the proportionality to be consistent at
any distance. (margin of error being less than that of our equipment)


The actual magnitudes of the field, while not known, in most cases, will
maintain the same proportions.
How true this is in theory and practice is material dependent for permanent magnets.
But for the most part your numbers are valid enough to set up a gradient scale.
Then compare to your springs for verification.



I was fixing a shower-rod, slipped and hit my head on the sink. When i came to, that's when i had the idea for the "Flux Capacitor", Which makes Perpetual Motion possible.

ayeaye

Quote from: sm0ky2 on January 10, 2020, 09:04:41 AM
Was this the 'break away' force?

It is the minimal force by which the magnets attracted pole to pole, separate. To measure it, i put a thin cardboard ribbon (one cut from the cardboard matchbox) around the magnet, with holes in it, to attach the scales hook. Then i put the magnet on the pole of another magnet. Then i pulled with scales, as long as the magnet separated from the other magnet. It is that this separation force is very exact, because whenever that force is reached, the force rapidly decreases, and the spring of the scales pulls the magnet completely off the other magnet. I learned to do that in a plastic bag, so the magnets will not fly away.


ayeaye

Quote from: sm0ky2 on January 10, 2020, 09:00:25 AM
moving towards or away
from the stack will give you different measurements at different
points. Record the distances and measurements.

Yes in my video i did exactly that. That is, all that is necessary is to move the magnet by small increments, then every time stop the scales. The distance moved and the scales reading can then be seen from the video. Then i calculated energy for all such small movements, by multiplying the force by the distance, and summed up all the energies, getting the energy at one side.

Another thing is, it is equally important to measure forces when the scales stand still, and when the scales move. Because in both cases, the friction force is to the opposite directions. I did that too, but could only properly measure the force when moving, when moving though all the measurable distance. I did the calculations too, considering the friction, and calculated friction, though with the accuracy the friction could been up to two times more.


sm0ky2

To know the change in energy of your magnet system you measure
all of the changes in energy from point A to point B.
It doesn't matter if you are forcing the magnets apart
or holding them back from pulling together.


At the instant of measurement:
There is no change in Energy.
The change happens from the motion.


You can know how much energy it was if you have the variables
Like if you know the acceleration and the difference in PE
You know how much energy went into the field interaction and how much
went into the spring. (it's about half)


If you know the changes in PE at every infinite point between them (sample rate)
Then you know the same thing. (in this manner time falls out of the equation)


But a change in PE between only two points is indeterminate.
Just like if we broke down the change between any 2 points in our
infinite sample rate. The change, although very small between those points,
is not determinant without knowing the rate of change.
This is the actual acceleration placed on the smaller magnet by the larger one.


Taking more samples over a distance narrows down the total sum of change in PE.
This sum adds up to the sum of changes in KE.
Which is exactly the sum of change in forces in the spring.
(minus heat, stress/strain, and any internal friction inside the clear tube)
And the total (+/- sum) change in both energies is the change in energy of your system.


I was fixing a shower-rod, slipped and hit my head on the sink. When i came to, that's when i had the idea for the "Flux Capacitor", Which makes Perpetual Motion possible.