Overunity.com Archives is Temporarily on Read Mode Only!



Free Energy will change the World - Free Energy will stop Climate Change - Free Energy will give us hope
and we will not surrender until free energy will be enabled all over the world, to power planes, cars, ships and trains.
Free energy will help the poor to become independent of needing expensive fuels.
So all in all Free energy will bring far more peace to the world than any other invention has already brought to the world.
Those beautiful words were written by Stefan Hartmann/Owner/Admin at overunity.com
Unfortunately now, Stefan Hartmann is very ill and He needs our help
Stefan wanted that I have all these massive data to get it back online
even being as ill as Stefan is, he transferred all databases and folders
that without his help, this Forum Archives would have never been published here
so, please, as the Webmaster and Creator of these Archives, I am asking that you help him
by making a donation on the Paypal Button above.
You can visit us or register at my main site at:
Overunity Machines Forum



Milkovic's Pendulum

Started by Johnsmith, January 11, 2022, 09:36:24 AM

Previous topic - Next topic

0 Members and 1 Guest are viewing this topic.

Johnsmith

  With Bessler's drawing Mt 85, this gets into both torque and force. And I started this thread because
this will be more about the science of how a pendulum works and some of the math behind it. And as
Milkovic has shown https://youtu.be/935Ktoxw1fM, timing does matter.
Bessler shows a swinging weight pumping water in a machine. And to reset the fulcrum of the pendulum
requires the use of a cantilever. In the 2nd image, weights not shown help to raise the bridge. Elevators
also use a weight so the elevator itself might not have much weight when it comes to it being lifted. That
helps to save energy.
With how efficient a pendulum is, when Milkovic's pendulum drops down, can some of that energy be
used to accelerate his pendulum? And this is where considering f = ma will help. This is because the
downward force of the pendulum is caused by inertia (I = ma) and gravity. Yet the movement of the pendulum
is lateral to the flow of gravity. That is the main reason why it's efficient. And now we're discussing engineering.

p.s., a ratchet type mechanism might work with this concept. It could help to
control when the pendulum is accelerated.

kolbacict

Does a self-running double Milkovich pendulum actually exist?
It didn't work out for me. It didn't work out yet. ;)

Johnsmith

Quote from: kolbacict on January 11, 2022, 12:49:36 PM
Does a self-running double Milkovich pendulum actually exist?
It didn't work out for me. It didn't work out yet. ;)


   I'll make a design engineering drawing this coming weekend. With his pendulum, it might
be able to pump water while operating perpetually. And from my experience with Bessler's
wheel, designing it is the easy part. Fabricating it can show design flaws which means that
work that's been done has to be done again.
I'll give you some hints, everything but the ratchet forest mentioned is in the 2 drawings.
This is a test, right?

Johnsmith

 To consider how to go perpetual with Milkovic's Pendulum first we need a pendulum. Am I right or am I right?
And with the work that I'm doing on Bessler and having to make tooling, go to the store, just didn't have much
time for this but threw together a quick model.
A bonus hint, the pendulum swinging towards you will be swinging upwards. The model took only about
an hour to do so didn't put much thought into it. With how the pendulum's are positioned, the back would be
dropping while the pendulum in front is swinging upwards. Yet the crossbar is parallel to the ground. This would
show that the back is dropping faster than the pendulum is swinging upwards. It will take some getting used to
thinking about how a Milkovic pendulum functions.
That is something that needs to be considered. The swinging pendulum's greatest velocity will be at bottom
center below its fulcrum. And then it will start slowing. There are some issues with how this function matters.
And this might be where it can be improved and why there is this thread.
And a 2nd bonus hint, it is possible that Milkovic limits the tilt of the crossbar. Otherwise it might be difficult to
time the swing of his pendulum for show. A shorter radius for the swing allows the pendulum to oscillate more
quickly. And it won't perform much work, why he does it for show. It's to get people interested in his work
which is a good idea.

p.s., what I might do is as I add each component, maybe someone will understand what I'm doing. If so then they
can say how they figured it out. But can I test the testers? Hmm? I dunno know.

p.s.s., I happen to like the pic just so you know. Can we play Jenga! with an idea or are we on Jeopardy?  Hmmm!?!

Alex, I'd like to take perpetual motion for 1,000.

p.s.s.s., I have contacted Milkovic and he can follow this thread if he wants to. I have previously discussed his work
with his son so who knows. It's been over a decade and no one has come up with anything yet. Still, according to him
his work on this is to help support those who lack something as basic as a water pump.
His website; https://www.veljkomilkovic.com/indexEng.htm

kolbacict

I have a question why an ordinary pendulum (not double) on a stand
swinging for so long.  In his video, which he compares it to spinning a flywheel
that stops much faster. Within a minute, it is still swinging.
I can't do that. Even with very good bearings, my pendulums stop in half a minute. ???

p.s.https://www.youtube.com/watch?v=q6pHcgtK5Os
It's mine. :)