Overunity.com Archives is Temporarily on Read Mode Only!



Free Energy will change the World - Free Energy will stop Climate Change - Free Energy will give us hope
and we will not surrender until free energy will be enabled all over the world, to power planes, cars, ships and trains.
Free energy will help the poor to become independent of needing expensive fuels.
So all in all Free energy will bring far more peace to the world than any other invention has already brought to the world.
Those beautiful words were written by Stefan Hartmann/Owner/Admin at overunity.com
Unfortunately now, Stefan Hartmann is very ill and He needs our help
Stefan wanted that I have all these massive data to get it back online
even being as ill as Stefan is, he transferred all databases and folders
that without his help, this Forum Archives would have never been published here
so, please, as the Webmaster and Creator of these Archives, I am asking that you help him
by making a donation on the Paypal Button above.
You can visit us or register at my main site at:
Overunity Machines Forum



MH's ideal coil and voltage question

Started by tinman, May 08, 2016, 04:42:41 AM

Previous topic - Next topic

0 Members and 2 Guests are viewing this topic.

Can a voltage exist across an ideal inductor that has a steady DC current flowing through it

yes it can
5 (25%)
no it cannot
11 (55%)
I have no idea
4 (20%)

Total Members Voted: 20


poynt99

Thanks MH for correcting me.

Although the question involves t=0 to t=13s, knowing what happens right at t=0 (the moment Vsource connects the inductor) is important.

It's also important to know what results when a number is divided by 0.

Let's see if examining this causes Brad to come to a different answer.
question everything, double check the facts, THEN decide your path...

Simple Cheap Low Power Oscillators V2.0
http://www.overunity.com/index.php?action=downloads;sa=view;down=248
Towards Realizing the TPU V1.4: http://www.overunity.com/index.php?action=downloads;sa=view;down=217
Capacitor Energy Transfer Experiments V1.0: http://www.overunity.com/index.php?action=downloads;sa=view;down=209

Didymus

Somebody has to go back to basics, it might as well be me.

The definition of an ideal inductor is a two-terminal device that obeys the current/voltage relationship:

V = L dI/dt  where V is the applied voltage, L is the inductance in Henries and dI/dt is the rate of change of the current with time.  The impedance of the voltage source and the resistance of the inductor are both assumed to be zero.

This definition can be rewritten as dI.dt = V/L.  Given an initial current of zero, applying 4 V to a 5 H inductor leads to a current through the inductor that increases at 0.8 amps per second.  After three seconds the current will be 2.4 amps.  If the supply is not turned off the current will increase indefinitely at 0.8 A/second.  There are no time constants involved.

For completeness, a capacitor is a two-terminal device the current through which is given by the equation:
I = C dV/dt where C is the capacitance in Farads.  The current through the capacitor is proportion to the rate of change in the applied voltage times the capacitance.  In this case applying a fixed current results in a voltage across the capacitor that increases indefinitely.

Pirate88179

Quote from: poynt99 on May 08, 2016, 04:13:46 PM
Thanks MH for correcting me.

Although the question involves t=0 to t=13s, knowing what happens right at t=0 (the moment Vsource connects the inductor) is important.

It's also important to know what results when a number is divided by 0.

Let's see if examining this causes Brad to come to a different answer.

I just googled a few math sites and they all said that you can not divide any number by 0.  It is impossible and incorrect to do so.

So, now my question is...why is that?  One site said that you would get infinity by doing this which is why you can't do this.  Gee, and I thought I understood simple math, ha ha.

The intuitive answer, at least for me, would have been that division means breaking something into a certain number of equal parts and if there are no divisions into equal parts, then you are left with the original amount undivided.  But, this fails the multiplication test when you multiply the answer to double check it....

10 divided by 0 = 10.  Then 10 times 0 should equal 10, and of course it does not.  So, 10 divided by 0 either equals infinity, 0 or, it is undefined.  Some say it can't be done.  All of this depends upon which math sites you want to believe.

Bill
See the Joule thief Circuit Diagrams, etc. topic here:
http://www.overunity.com/index.php?topic=6942.0;topicseen

Magluvin

Quote from: allcanadian on May 08, 2016, 12:19:55 PM
In an ideal voltage source the source Emf would be fixed and an ideal inductor would have virtually no losses. It seems to me no current could flow because the moment a charge tried to moved due to the ideal voltage source Emf the ideal inductor would produce an equal and opposite Cemf to oppose it. Ideally if the source Emf is always instantaneously opposed by the inductors Cemf then nothing can move, a stalemate.


AC

Lol. I said that a few times on this site. Just did yesterday. ;) ;)

Like are we taking about an ideal inductor that has no magnetic fields?  Like I said yesterday, it could be just the field charge before the ideal switch connects that could set up an ideal BEMF standoff and no current would ever flow, inductor or even a straight wire   Im glad someone here is on the same level of thinking as I am on this. ;) ;)   

Mags